Distance-Ordered Homotopic Thinning: A Skeletonization Algorithm for 3D Digital Images

A technique called distance-ordered homotopic thinning (DOHT) for skeletonizing 3D binary images is presented. DOHT produces skeletons that are homotopic, thin, and medial. This is achieved by sequentially deleting points in ascending distance order until no more can be safely deleted. A point can b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer vision and image understanding 1998-12, Vol.72 (3), p.404-413
1. Verfasser: Pudney, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 413
container_issue 3
container_start_page 404
container_title Computer vision and image understanding
container_volume 72
creator Pudney, Chris
description A technique called distance-ordered homotopic thinning (DOHT) for skeletonizing 3D binary images is presented. DOHT produces skeletons that are homotopic, thin, and medial. This is achieved by sequentially deleting points in ascending distance order until no more can be safely deleted. A point can be safely deleted only if doing so preserves topology. Distance information is provided by the chamfer distance transform, an integer approximation to the Euclidean distance transform. Two variations of DOHT are presented that arise from using different rules for preserving points. The first uses explicit rules for preserving the ends of medial axes or edges of medial surfaces, and the second preserves the centers of maximal balls identified from the chamfer distance transform. By thresholding the centers according to their distance values, the user can control the scale of features represented in the skeleton. Results are presented for real and synthetic 2D and 3D data.
doi_str_mv 10.1006/cviu.1998.0680
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27499096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1077314298906804</els_id><sourcerecordid>27499096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-b74c09498c11b81ddcc2e781eb231cab40a832b2727a69ce91aa39317e4a3583</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhiMEEp8rswfEluKz0yRmq1o-KlXqQIXYLMe5loMkLraLBL-eREViYrobnvc93ZMkl8BHwHl-Yz9pNwKlyhHPS36QnABXPBVy_HI47EWRSsjEcXIawhvnAJmCk-R5RiGazmK69DV6rNmja110W7Js9UpdR93mlk3Y0zs2GF1H3yaS69ik2ThP8bVla-eZnLEZbSiahs1bs8FwnhytTRPw4neeJav7u9X0MV0sH-bTySK1GYiYVkVmucpUaQGqEuraWoFFCVgJCdZUGTelFJUoRGFyZVGBMVJJKDAzclzKs-R6X7v17mOHIeqWgsWmMR26XdCiyJTiKu_B0R603oXgca23nlrjvzRwPdjTgz092NODvT5w9dtsgjXN2veOKPylcj4Wueixco9h_-QnodfBEvY6a_Joo64d_XfhB2OIgwI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27499096</pqid></control><display><type>article</type><title>Distance-Ordered Homotopic Thinning: A Skeletonization Algorithm for 3D Digital Images</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Pudney, Chris</creator><creatorcontrib>Pudney, Chris</creatorcontrib><description>A technique called distance-ordered homotopic thinning (DOHT) for skeletonizing 3D binary images is presented. DOHT produces skeletons that are homotopic, thin, and medial. This is achieved by sequentially deleting points in ascending distance order until no more can be safely deleted. A point can be safely deleted only if doing so preserves topology. Distance information is provided by the chamfer distance transform, an integer approximation to the Euclidean distance transform. Two variations of DOHT are presented that arise from using different rules for preserving points. The first uses explicit rules for preserving the ends of medial axes or edges of medial surfaces, and the second preserves the centers of maximal balls identified from the chamfer distance transform. By thresholding the centers according to their distance values, the user can control the scale of features represented in the skeleton. Results are presented for real and synthetic 2D and 3D data.</description><identifier>ISSN: 1077-3142</identifier><identifier>EISSN: 1090-235X</identifier><identifier>DOI: 10.1006/cviu.1998.0680</identifier><identifier>CODEN: CVIUF4</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Pattern recognition. Digital image processing. Computational geometry ; Theoretical computing</subject><ispartof>Computer vision and image understanding, 1998-12, Vol.72 (3), p.404-413</ispartof><rights>1998 Academic Press</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-b74c09498c11b81ddcc2e781eb231cab40a832b2727a69ce91aa39317e4a3583</citedby><cites>FETCH-LOGICAL-c412t-b74c09498c11b81ddcc2e781eb231cab40a832b2727a69ce91aa39317e4a3583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/cviu.1998.0680$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1605262$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pudney, Chris</creatorcontrib><title>Distance-Ordered Homotopic Thinning: A Skeletonization Algorithm for 3D Digital Images</title><title>Computer vision and image understanding</title><description>A technique called distance-ordered homotopic thinning (DOHT) for skeletonizing 3D binary images is presented. DOHT produces skeletons that are homotopic, thin, and medial. This is achieved by sequentially deleting points in ascending distance order until no more can be safely deleted. A point can be safely deleted only if doing so preserves topology. Distance information is provided by the chamfer distance transform, an integer approximation to the Euclidean distance transform. Two variations of DOHT are presented that arise from using different rules for preserving points. The first uses explicit rules for preserving the ends of medial axes or edges of medial surfaces, and the second preserves the centers of maximal balls identified from the chamfer distance transform. By thresholding the centers according to their distance values, the user can control the scale of features represented in the skeleton. Results are presented for real and synthetic 2D and 3D data.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Theoretical computing</subject><issn>1077-3142</issn><issn>1090-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhiMEEp8rswfEluKz0yRmq1o-KlXqQIXYLMe5loMkLraLBL-eREViYrobnvc93ZMkl8BHwHl-Yz9pNwKlyhHPS36QnABXPBVy_HI47EWRSsjEcXIawhvnAJmCk-R5RiGazmK69DV6rNmja110W7Js9UpdR93mlk3Y0zs2GF1H3yaS69ik2ThP8bVla-eZnLEZbSiahs1bs8FwnhytTRPw4neeJav7u9X0MV0sH-bTySK1GYiYVkVmucpUaQGqEuraWoFFCVgJCdZUGTelFJUoRGFyZVGBMVJJKDAzclzKs-R6X7v17mOHIeqWgsWmMR26XdCiyJTiKu_B0R603oXgca23nlrjvzRwPdjTgz092NODvT5w9dtsgjXN2veOKPylcj4Wueixco9h_-QnodfBEvY6a_Joo64d_XfhB2OIgwI</recordid><startdate>19981201</startdate><enddate>19981201</enddate><creator>Pudney, Chris</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19981201</creationdate><title>Distance-Ordered Homotopic Thinning: A Skeletonization Algorithm for 3D Digital Images</title><author>Pudney, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-b74c09498c11b81ddcc2e781eb231cab40a832b2727a69ce91aa39317e4a3583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pudney, Chris</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer vision and image understanding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pudney, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distance-Ordered Homotopic Thinning: A Skeletonization Algorithm for 3D Digital Images</atitle><jtitle>Computer vision and image understanding</jtitle><date>1998-12-01</date><risdate>1998</risdate><volume>72</volume><issue>3</issue><spage>404</spage><epage>413</epage><pages>404-413</pages><issn>1077-3142</issn><eissn>1090-235X</eissn><coden>CVIUF4</coden><abstract>A technique called distance-ordered homotopic thinning (DOHT) for skeletonizing 3D binary images is presented. DOHT produces skeletons that are homotopic, thin, and medial. This is achieved by sequentially deleting points in ascending distance order until no more can be safely deleted. A point can be safely deleted only if doing so preserves topology. Distance information is provided by the chamfer distance transform, an integer approximation to the Euclidean distance transform. Two variations of DOHT are presented that arise from using different rules for preserving points. The first uses explicit rules for preserving the ends of medial axes or edges of medial surfaces, and the second preserves the centers of maximal balls identified from the chamfer distance transform. By thresholding the centers according to their distance values, the user can control the scale of features represented in the skeleton. Results are presented for real and synthetic 2D and 3D data.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/cviu.1998.0680</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1077-3142
ispartof Computer vision and image understanding, 1998-12, Vol.72 (3), p.404-413
issn 1077-3142
1090-235X
language eng
recordid cdi_proquest_miscellaneous_27499096
source Elsevier ScienceDirect Journals Complete
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Pattern recognition. Digital image processing. Computational geometry
Theoretical computing
title Distance-Ordered Homotopic Thinning: A Skeletonization Algorithm for 3D Digital Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T07%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distance-Ordered%20Homotopic%20Thinning:%20A%20Skeletonization%20Algorithm%20for%203D%20Digital%20Images&rft.jtitle=Computer%20vision%20and%20image%20understanding&rft.au=Pudney,%20Chris&rft.date=1998-12-01&rft.volume=72&rft.issue=3&rft.spage=404&rft.epage=413&rft.pages=404-413&rft.issn=1077-3142&rft.eissn=1090-235X&rft.coden=CVIUF4&rft_id=info:doi/10.1006/cviu.1998.0680&rft_dat=%3Cproquest_cross%3E27499096%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27499096&rft_id=info:pmid/&rft_els_id=S1077314298906804&rfr_iscdi=true