Diffusion in helium white dwarf stars

This paper is aimed at exploring the effects of diffusion on the structure and evolution of low-mass helium white dwarfs. To this end, we solve the multicomponent flow equations describing gravitational settling and chemical and thermal diffusion. The diffusion calculations are coupled to an evoluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2000-10, Vol.317 (4), p.952-964
Hauptverfasser: Althaus, L. G., Benvenuto, O. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is aimed at exploring the effects of diffusion on the structure and evolution of low-mass helium white dwarfs. To this end, we solve the multicomponent flow equations describing gravitational settling and chemical and thermal diffusion. The diffusion calculations are coupled to an evolutionary code in order to follow the cooling of low-mass, helium core white dwarf models having envelopes made up of a mixture of hydrogen and helium, as recently suggested by detailed evolutionary calculations for white dwarf progenitors in binary systems. We find that diffusion causes hydrogen to float and the other elements to sink over time-scales shorter than evolutionary time-scales. This produces a noticeable change in the structure of the outer layers, making the star inflate. Thus, in order to compute accurately the mass-radius relation for low-mass helium white dwarfs we need to account for the diffusion processes during (at least) the white dwarf stages of the evolution of these objects. This should be particularly important when studying the general characteristics of binary systems containing a helium white dwarf and a pulsar. In addition, we present an analytic, approximate model for the outer layers of the white dwarf aimed at interpreting the physical reasons for the change in the surface gravity for low-mass white dwarfs induced by diffusion.
ISSN:0035-8711
1365-2966
DOI:10.1046/j.1365-8711.2000.03825.x