Intelligent inference systems based on influence diagrams

This paper explores various inference techniques for an intelligent decision support system based on influence diagrams. Rule-based expert systems for decision support have been successful for well-structured, well understood decision situations of a taxonomic classification type. As uncertainty is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Decision Support Systems 1995-09, Vol.15 (1), p.27-43
Hauptverfasser: Gottinger, H.W., Weimann, H.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43
container_issue 1
container_start_page 27
container_title Decision Support Systems
container_volume 15
creator Gottinger, H.W.
Weimann, H.P.
description This paper explores various inference techniques for an intelligent decision support system based on influence diagrams. Rule-based expert systems for decision support have been successful for well-structured, well understood decision situations of a taxonomic classification type. As uncertainty is prevalent, information costly and payoff relevant, and the preferred solution depends on the specific beliefs and preferences of an individual or group decision maker the resolution methods of decision theory embodied in first-order predicate logic forms a natural basis for computerized intelligent decision support. Based on a unified characterization of knowledge inference procedures for logical probabilistic and decision theoretic reasoning are described in detail.
doi_str_mv 10.1016/0167-9236(94)00049-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27494818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>016792369400049X</els_id><sourcerecordid>27494818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-a191d60e7175feda3f637a161295885e78b2e4b4383cf5f31cc4562daacfbf483</originalsourceid><addsrcrecordid>eNp9kEtLxDAQgIMoWFf_gYfiQfRQTZo0j4sgi4-FBS8KewtpOlmy9LEmrbD_3nZXPHjwMMxhvnl9CF0SfEcw4fdjiEzllN8odosxZipbHaGESEGzQihxjJJf5BSdxbjBmFMheYLUou2hrv0a2j71rYMArYU07mIPTUxLE6FKu3Yq1cO-VHmzDqaJ5-jEmTrCxU-eoY_np_f5a7Z8e1nMH5eZpTzvM0MUqTgGQUThoDLUjZsN4SRXhZQFCFnmwEpGJbWucJRYywqeV8ZYVzom6QxdH-ZuQ_c5QOx146MdbzYtdEPUuWCKSTKBV3_ATTeEdrxN55gXSnLJRogdIBu6GAM4vQ2-MWGnCdaTTD2Z0pMprZjey9Srse3h0Abjp18ego7WTzoqH8D2uur8_wO-AdiFexI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206598684</pqid></control><display><type>article</type><title>Intelligent inference systems based on influence diagrams</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gottinger, H.W. ; Weimann, H.P.</creator><creatorcontrib>Gottinger, H.W. ; Weimann, H.P.</creatorcontrib><description>This paper explores various inference techniques for an intelligent decision support system based on influence diagrams. Rule-based expert systems for decision support have been successful for well-structured, well understood decision situations of a taxonomic classification type. As uncertainty is prevalent, information costly and payoff relevant, and the preferred solution depends on the specific beliefs and preferences of an individual or group decision maker the resolution methods of decision theory embodied in first-order predicate logic forms a natural basis for computerized intelligent decision support. Based on a unified characterization of knowledge inference procedures for logical probabilistic and decision theoretic reasoning are described in detail.</description><identifier>ISSN: 0167-9236</identifier><identifier>EISSN: 1873-5797</identifier><identifier>DOI: 10.1016/0167-9236(94)00049-X</identifier><identifier>CODEN: DSSYDK</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Artificial intelligence ; Decision making models ; Decision support systems ; Decision theoretic reasoning ; Decision theory ; Diagrams ; Influence diagrams ; Intelligent decision support systems ; Logic ; Logical reasoning ; Probabilistic reasoning ; Probability ; Studies</subject><ispartof>Decision Support Systems, 1995-09, Vol.15 (1), p.27-43</ispartof><rights>1995</rights><rights>Copyright Elsevier Sequoia S.A. Sep 1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-a191d60e7175feda3f637a161295885e78b2e4b4383cf5f31cc4562daacfbf483</citedby><cites>FETCH-LOGICAL-c362t-a191d60e7175feda3f637a161295885e78b2e4b4383cf5f31cc4562daacfbf483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0167-9236(94)00049-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Gottinger, H.W.</creatorcontrib><creatorcontrib>Weimann, H.P.</creatorcontrib><title>Intelligent inference systems based on influence diagrams</title><title>Decision Support Systems</title><description>This paper explores various inference techniques for an intelligent decision support system based on influence diagrams. Rule-based expert systems for decision support have been successful for well-structured, well understood decision situations of a taxonomic classification type. As uncertainty is prevalent, information costly and payoff relevant, and the preferred solution depends on the specific beliefs and preferences of an individual or group decision maker the resolution methods of decision theory embodied in first-order predicate logic forms a natural basis for computerized intelligent decision support. Based on a unified characterization of knowledge inference procedures for logical probabilistic and decision theoretic reasoning are described in detail.</description><subject>Artificial intelligence</subject><subject>Decision making models</subject><subject>Decision support systems</subject><subject>Decision theoretic reasoning</subject><subject>Decision theory</subject><subject>Diagrams</subject><subject>Influence diagrams</subject><subject>Intelligent decision support systems</subject><subject>Logic</subject><subject>Logical reasoning</subject><subject>Probabilistic reasoning</subject><subject>Probability</subject><subject>Studies</subject><issn>0167-9236</issn><issn>1873-5797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQgIMoWFf_gYfiQfRQTZo0j4sgi4-FBS8KewtpOlmy9LEmrbD_3nZXPHjwMMxhvnl9CF0SfEcw4fdjiEzllN8odosxZipbHaGESEGzQihxjJJf5BSdxbjBmFMheYLUou2hrv0a2j71rYMArYU07mIPTUxLE6FKu3Yq1cO-VHmzDqaJ5-jEmTrCxU-eoY_np_f5a7Z8e1nMH5eZpTzvM0MUqTgGQUThoDLUjZsN4SRXhZQFCFnmwEpGJbWucJRYywqeV8ZYVzom6QxdH-ZuQ_c5QOx146MdbzYtdEPUuWCKSTKBV3_ATTeEdrxN55gXSnLJRogdIBu6GAM4vQ2-MWGnCdaTTD2Z0pMprZjey9Srse3h0Abjp18ego7WTzoqH8D2uur8_wO-AdiFexI</recordid><startdate>19950901</startdate><enddate>19950901</enddate><creator>Gottinger, H.W.</creator><creator>Weimann, H.P.</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19950901</creationdate><title>Intelligent inference systems based on influence diagrams</title><author>Gottinger, H.W. ; Weimann, H.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-a191d60e7175feda3f637a161295885e78b2e4b4383cf5f31cc4562daacfbf483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Artificial intelligence</topic><topic>Decision making models</topic><topic>Decision support systems</topic><topic>Decision theoretic reasoning</topic><topic>Decision theory</topic><topic>Diagrams</topic><topic>Influence diagrams</topic><topic>Intelligent decision support systems</topic><topic>Logic</topic><topic>Logical reasoning</topic><topic>Probabilistic reasoning</topic><topic>Probability</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gottinger, H.W.</creatorcontrib><creatorcontrib>Weimann, H.P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Decision Support Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gottinger, H.W.</au><au>Weimann, H.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent inference systems based on influence diagrams</atitle><jtitle>Decision Support Systems</jtitle><date>1995-09-01</date><risdate>1995</risdate><volume>15</volume><issue>1</issue><spage>27</spage><epage>43</epage><pages>27-43</pages><issn>0167-9236</issn><eissn>1873-5797</eissn><coden>DSSYDK</coden><abstract>This paper explores various inference techniques for an intelligent decision support system based on influence diagrams. Rule-based expert systems for decision support have been successful for well-structured, well understood decision situations of a taxonomic classification type. As uncertainty is prevalent, information costly and payoff relevant, and the preferred solution depends on the specific beliefs and preferences of an individual or group decision maker the resolution methods of decision theory embodied in first-order predicate logic forms a natural basis for computerized intelligent decision support. Based on a unified characterization of knowledge inference procedures for logical probabilistic and decision theoretic reasoning are described in detail.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0167-9236(94)00049-X</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9236
ispartof Decision Support Systems, 1995-09, Vol.15 (1), p.27-43
issn 0167-9236
1873-5797
language eng
recordid cdi_proquest_miscellaneous_27494818
source ScienceDirect Journals (5 years ago - present)
subjects Artificial intelligence
Decision making models
Decision support systems
Decision theoretic reasoning
Decision theory
Diagrams
Influence diagrams
Intelligent decision support systems
Logic
Logical reasoning
Probabilistic reasoning
Probability
Studies
title Intelligent inference systems based on influence diagrams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A44%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20inference%20systems%20based%20on%20influence%20diagrams&rft.jtitle=Decision%20Support%20Systems&rft.au=Gottinger,%20H.W.&rft.date=1995-09-01&rft.volume=15&rft.issue=1&rft.spage=27&rft.epage=43&rft.pages=27-43&rft.issn=0167-9236&rft.eissn=1873-5797&rft.coden=DSSYDK&rft_id=info:doi/10.1016/0167-9236(94)00049-X&rft_dat=%3Cproquest_cross%3E27494818%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206598684&rft_id=info:pmid/&rft_els_id=016792369400049X&rfr_iscdi=true