Intelligent inference systems based on influence diagrams
This paper explores various inference techniques for an intelligent decision support system based on influence diagrams. Rule-based expert systems for decision support have been successful for well-structured, well understood decision situations of a taxonomic classification type. As uncertainty is...
Gespeichert in:
Veröffentlicht in: | Decision Support Systems 1995-09, Vol.15 (1), p.27-43 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 43 |
---|---|
container_issue | 1 |
container_start_page | 27 |
container_title | Decision Support Systems |
container_volume | 15 |
creator | Gottinger, H.W. Weimann, H.P. |
description | This paper explores various inference techniques for an intelligent decision support system based on influence diagrams. Rule-based expert systems for decision support have been successful for well-structured, well understood decision situations of a taxonomic classification type. As uncertainty is prevalent, information costly and payoff relevant, and the preferred solution depends on the specific beliefs and preferences of an individual or group decision maker the resolution methods of decision theory embodied in first-order predicate logic forms a natural basis for computerized intelligent decision support. Based on a unified characterization of knowledge inference procedures for logical probabilistic and decision theoretic reasoning are described in detail. |
doi_str_mv | 10.1016/0167-9236(94)00049-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27494818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>016792369400049X</els_id><sourcerecordid>27494818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-a191d60e7175feda3f637a161295885e78b2e4b4383cf5f31cc4562daacfbf483</originalsourceid><addsrcrecordid>eNp9kEtLxDAQgIMoWFf_gYfiQfRQTZo0j4sgi4-FBS8KewtpOlmy9LEmrbD_3nZXPHjwMMxhvnl9CF0SfEcw4fdjiEzllN8odosxZipbHaGESEGzQihxjJJf5BSdxbjBmFMheYLUou2hrv0a2j71rYMArYU07mIPTUxLE6FKu3Yq1cO-VHmzDqaJ5-jEmTrCxU-eoY_np_f5a7Z8e1nMH5eZpTzvM0MUqTgGQUThoDLUjZsN4SRXhZQFCFnmwEpGJbWucJRYywqeV8ZYVzom6QxdH-ZuQ_c5QOx146MdbzYtdEPUuWCKSTKBV3_ATTeEdrxN55gXSnLJRogdIBu6GAM4vQ2-MWGnCdaTTD2Z0pMprZjey9Srse3h0Abjp18ego7WTzoqH8D2uur8_wO-AdiFexI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206598684</pqid></control><display><type>article</type><title>Intelligent inference systems based on influence diagrams</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gottinger, H.W. ; Weimann, H.P.</creator><creatorcontrib>Gottinger, H.W. ; Weimann, H.P.</creatorcontrib><description>This paper explores various inference techniques for an intelligent decision support system based on influence diagrams. Rule-based expert systems for decision support have been successful for well-structured, well understood decision situations of a taxonomic classification type. As uncertainty is prevalent, information costly and payoff relevant, and the preferred solution depends on the specific beliefs and preferences of an individual or group decision maker the resolution methods of decision theory embodied in first-order predicate logic forms a natural basis for computerized intelligent decision support. Based on a unified characterization of knowledge inference procedures for logical probabilistic and decision theoretic reasoning are described in detail.</description><identifier>ISSN: 0167-9236</identifier><identifier>EISSN: 1873-5797</identifier><identifier>DOI: 10.1016/0167-9236(94)00049-X</identifier><identifier>CODEN: DSSYDK</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Artificial intelligence ; Decision making models ; Decision support systems ; Decision theoretic reasoning ; Decision theory ; Diagrams ; Influence diagrams ; Intelligent decision support systems ; Logic ; Logical reasoning ; Probabilistic reasoning ; Probability ; Studies</subject><ispartof>Decision Support Systems, 1995-09, Vol.15 (1), p.27-43</ispartof><rights>1995</rights><rights>Copyright Elsevier Sequoia S.A. Sep 1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-a191d60e7175feda3f637a161295885e78b2e4b4383cf5f31cc4562daacfbf483</citedby><cites>FETCH-LOGICAL-c362t-a191d60e7175feda3f637a161295885e78b2e4b4383cf5f31cc4562daacfbf483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0167-9236(94)00049-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Gottinger, H.W.</creatorcontrib><creatorcontrib>Weimann, H.P.</creatorcontrib><title>Intelligent inference systems based on influence diagrams</title><title>Decision Support Systems</title><description>This paper explores various inference techniques for an intelligent decision support system based on influence diagrams. Rule-based expert systems for decision support have been successful for well-structured, well understood decision situations of a taxonomic classification type. As uncertainty is prevalent, information costly and payoff relevant, and the preferred solution depends on the specific beliefs and preferences of an individual or group decision maker the resolution methods of decision theory embodied in first-order predicate logic forms a natural basis for computerized intelligent decision support. Based on a unified characterization of knowledge inference procedures for logical probabilistic and decision theoretic reasoning are described in detail.</description><subject>Artificial intelligence</subject><subject>Decision making models</subject><subject>Decision support systems</subject><subject>Decision theoretic reasoning</subject><subject>Decision theory</subject><subject>Diagrams</subject><subject>Influence diagrams</subject><subject>Intelligent decision support systems</subject><subject>Logic</subject><subject>Logical reasoning</subject><subject>Probabilistic reasoning</subject><subject>Probability</subject><subject>Studies</subject><issn>0167-9236</issn><issn>1873-5797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQgIMoWFf_gYfiQfRQTZo0j4sgi4-FBS8KewtpOlmy9LEmrbD_3nZXPHjwMMxhvnl9CF0SfEcw4fdjiEzllN8odosxZipbHaGESEGzQihxjJJf5BSdxbjBmFMheYLUou2hrv0a2j71rYMArYU07mIPTUxLE6FKu3Yq1cO-VHmzDqaJ5-jEmTrCxU-eoY_np_f5a7Z8e1nMH5eZpTzvM0MUqTgGQUThoDLUjZsN4SRXhZQFCFnmwEpGJbWucJRYywqeV8ZYVzom6QxdH-ZuQ_c5QOx146MdbzYtdEPUuWCKSTKBV3_ATTeEdrxN55gXSnLJRogdIBu6GAM4vQ2-MWGnCdaTTD2Z0pMprZjey9Srse3h0Abjp18ego7WTzoqH8D2uur8_wO-AdiFexI</recordid><startdate>19950901</startdate><enddate>19950901</enddate><creator>Gottinger, H.W.</creator><creator>Weimann, H.P.</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19950901</creationdate><title>Intelligent inference systems based on influence diagrams</title><author>Gottinger, H.W. ; Weimann, H.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-a191d60e7175feda3f637a161295885e78b2e4b4383cf5f31cc4562daacfbf483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Artificial intelligence</topic><topic>Decision making models</topic><topic>Decision support systems</topic><topic>Decision theoretic reasoning</topic><topic>Decision theory</topic><topic>Diagrams</topic><topic>Influence diagrams</topic><topic>Intelligent decision support systems</topic><topic>Logic</topic><topic>Logical reasoning</topic><topic>Probabilistic reasoning</topic><topic>Probability</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gottinger, H.W.</creatorcontrib><creatorcontrib>Weimann, H.P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Decision Support Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gottinger, H.W.</au><au>Weimann, H.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent inference systems based on influence diagrams</atitle><jtitle>Decision Support Systems</jtitle><date>1995-09-01</date><risdate>1995</risdate><volume>15</volume><issue>1</issue><spage>27</spage><epage>43</epage><pages>27-43</pages><issn>0167-9236</issn><eissn>1873-5797</eissn><coden>DSSYDK</coden><abstract>This paper explores various inference techniques for an intelligent decision support system based on influence diagrams. Rule-based expert systems for decision support have been successful for well-structured, well understood decision situations of a taxonomic classification type. As uncertainty is prevalent, information costly and payoff relevant, and the preferred solution depends on the specific beliefs and preferences of an individual or group decision maker the resolution methods of decision theory embodied in first-order predicate logic forms a natural basis for computerized intelligent decision support. Based on a unified characterization of knowledge inference procedures for logical probabilistic and decision theoretic reasoning are described in detail.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0167-9236(94)00049-X</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9236 |
ispartof | Decision Support Systems, 1995-09, Vol.15 (1), p.27-43 |
issn | 0167-9236 1873-5797 |
language | eng |
recordid | cdi_proquest_miscellaneous_27494818 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Artificial intelligence Decision making models Decision support systems Decision theoretic reasoning Decision theory Diagrams Influence diagrams Intelligent decision support systems Logic Logical reasoning Probabilistic reasoning Probability Studies |
title | Intelligent inference systems based on influence diagrams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A44%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20inference%20systems%20based%20on%20influence%20diagrams&rft.jtitle=Decision%20Support%20Systems&rft.au=Gottinger,%20H.W.&rft.date=1995-09-01&rft.volume=15&rft.issue=1&rft.spage=27&rft.epage=43&rft.pages=27-43&rft.issn=0167-9236&rft.eissn=1873-5797&rft.coden=DSSYDK&rft_id=info:doi/10.1016/0167-9236(94)00049-X&rft_dat=%3Cproquest_cross%3E27494818%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206598684&rft_id=info:pmid/&rft_els_id=016792369400049X&rfr_iscdi=true |