Difference Schemes for the Time Evolution of Three-Dimensional Kinetic Equations

This paper is devoted to the development of finite difference methods for the solution of problems involving the three-dimensional kinetic equation with a Coulomb collision operator. New conservative difference schemes are presented and analysed. The schemes include a new approximation for mixed der...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 1998-12, Vol.147 (2), p.239-264
Hauptverfasser: Zaitsev, F.S., Longinov, V.V., O'Brien, M.R., Tanner, R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue 2
container_start_page 239
container_title Journal of computational physics
container_volume 147
creator Zaitsev, F.S.
Longinov, V.V.
O'Brien, M.R.
Tanner, R.
description This paper is devoted to the development of finite difference methods for the solution of problems involving the three-dimensional kinetic equation with a Coulomb collision operator. New conservative difference schemes are presented and analysed. The schemes include a new approximation for mixed derivatives and accurate treatment of internal separatrix layers. The main advantages of the new schemes are improved stability and accuracy which, for example, allows calculation of the ion distribution function in thermonuclear experiments for a wider range of parameters.
doi_str_mv 10.1006/jcph.1998.6075
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27474796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999198960752</els_id><sourcerecordid>27474796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-a5d1a38c3862f3f9739ca98dcaabfcc78f4b743812ee69ff73cb0d786b53bb663</originalsourceid><addsrcrecordid>eNp1kEtLxDAURoMoOI5uXWflrjVp2jyWMjM-cEDBcR3S9IZm6GMmaQf897aMW7mLCx_nu1wOQveUpJQQ_ri3hzqlSsmUE1FcoAUliiSZoPwSLQjJaKKUotfoJsY9IUQWuVygz7V3DgJ0FvCXraGFiF0f8FAD3vkW8ObUN-Pg-w73Du_qAJCsp7yLU2Qa_O47GLzFm-NoZireoitnmgh3f3uJvp83u9Vrsv14eVs9bRPLqBgSU1TUMGmZ5JljTgmmrFGyssaUzlohXV6KnEmaAXDlnGC2JJWQvCxYWXLOlujhfPcQ-uMIcdCtjxaaxnTQj1FnIp9GzWB6Bm3oYwzg9CH41oQfTYmexelZnJ7F6VncVJDnAkzvnzwEHa2fBVU-gB101fv_qr-Dk3XO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27474796</pqid></control><display><type>article</type><title>Difference Schemes for the Time Evolution of Three-Dimensional Kinetic Equations</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zaitsev, F.S. ; Longinov, V.V. ; O'Brien, M.R. ; Tanner, R.</creator><creatorcontrib>Zaitsev, F.S. ; Longinov, V.V. ; O'Brien, M.R. ; Tanner, R.</creatorcontrib><description>This paper is devoted to the development of finite difference methods for the solution of problems involving the three-dimensional kinetic equation with a Coulomb collision operator. New conservative difference schemes are presented and analysed. The schemes include a new approximation for mixed derivatives and accurate treatment of internal separatrix layers. The main advantages of the new schemes are improved stability and accuracy which, for example, allows calculation of the ion distribution function in thermonuclear experiments for a wider range of parameters.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1006/jcph.1998.6075</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of computational physics, 1998-12, Vol.147 (2), p.239-264</ispartof><rights>1998 Academic Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-a5d1a38c3862f3f9739ca98dcaabfcc78f4b743812ee69ff73cb0d786b53bb663</citedby><cites>FETCH-LOGICAL-c317t-a5d1a38c3862f3f9739ca98dcaabfcc78f4b743812ee69ff73cb0d786b53bb663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jcph.1998.6075$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Zaitsev, F.S.</creatorcontrib><creatorcontrib>Longinov, V.V.</creatorcontrib><creatorcontrib>O'Brien, M.R.</creatorcontrib><creatorcontrib>Tanner, R.</creatorcontrib><title>Difference Schemes for the Time Evolution of Three-Dimensional Kinetic Equations</title><title>Journal of computational physics</title><description>This paper is devoted to the development of finite difference methods for the solution of problems involving the three-dimensional kinetic equation with a Coulomb collision operator. New conservative difference schemes are presented and analysed. The schemes include a new approximation for mixed derivatives and accurate treatment of internal separatrix layers. The main advantages of the new schemes are improved stability and accuracy which, for example, allows calculation of the ion distribution function in thermonuclear experiments for a wider range of parameters.</description><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAURoMoOI5uXWflrjVp2jyWMjM-cEDBcR3S9IZm6GMmaQf897aMW7mLCx_nu1wOQveUpJQQ_ri3hzqlSsmUE1FcoAUliiSZoPwSLQjJaKKUotfoJsY9IUQWuVygz7V3DgJ0FvCXraGFiF0f8FAD3vkW8ObUN-Pg-w73Du_qAJCsp7yLU2Qa_O47GLzFm-NoZireoitnmgh3f3uJvp83u9Vrsv14eVs9bRPLqBgSU1TUMGmZ5JljTgmmrFGyssaUzlohXV6KnEmaAXDlnGC2JJWQvCxYWXLOlujhfPcQ-uMIcdCtjxaaxnTQj1FnIp9GzWB6Bm3oYwzg9CH41oQfTYmexelZnJ7F6VncVJDnAkzvnzwEHa2fBVU-gB101fv_qr-Dk3XO</recordid><startdate>19981210</startdate><enddate>19981210</enddate><creator>Zaitsev, F.S.</creator><creator>Longinov, V.V.</creator><creator>O'Brien, M.R.</creator><creator>Tanner, R.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19981210</creationdate><title>Difference Schemes for the Time Evolution of Three-Dimensional Kinetic Equations</title><author>Zaitsev, F.S. ; Longinov, V.V. ; O'Brien, M.R. ; Tanner, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-a5d1a38c3862f3f9739ca98dcaabfcc78f4b743812ee69ff73cb0d786b53bb663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaitsev, F.S.</creatorcontrib><creatorcontrib>Longinov, V.V.</creatorcontrib><creatorcontrib>O'Brien, M.R.</creatorcontrib><creatorcontrib>Tanner, R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaitsev, F.S.</au><au>Longinov, V.V.</au><au>O'Brien, M.R.</au><au>Tanner, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Difference Schemes for the Time Evolution of Three-Dimensional Kinetic Equations</atitle><jtitle>Journal of computational physics</jtitle><date>1998-12-10</date><risdate>1998</risdate><volume>147</volume><issue>2</issue><spage>239</spage><epage>264</epage><pages>239-264</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>This paper is devoted to the development of finite difference methods for the solution of problems involving the three-dimensional kinetic equation with a Coulomb collision operator. New conservative difference schemes are presented and analysed. The schemes include a new approximation for mixed derivatives and accurate treatment of internal separatrix layers. The main advantages of the new schemes are improved stability and accuracy which, for example, allows calculation of the ion distribution function in thermonuclear experiments for a wider range of parameters.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jcph.1998.6075</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 1998-12, Vol.147 (2), p.239-264
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_27474796
source Elsevier ScienceDirect Journals Complete
title Difference Schemes for the Time Evolution of Three-Dimensional Kinetic Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T07%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Difference%20Schemes%20for%20the%20Time%20Evolution%20of%20Three-Dimensional%20Kinetic%20Equations&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Zaitsev,%20F.S.&rft.date=1998-12-10&rft.volume=147&rft.issue=2&rft.spage=239&rft.epage=264&rft.pages=239-264&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1006/jcph.1998.6075&rft_dat=%3Cproquest_cross%3E27474796%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27474796&rft_id=info:pmid/&rft_els_id=S0021999198960752&rfr_iscdi=true