Neural-network-based scheme for sensor failure detection, identification, and accommodation

This paper presents a neural-network-based approach for the problem of sensor failure detection, identification, and accommodation for a flight control system without physical redundancy in the sensors. The approach is based on the introduction of on-line learning neural network estimators. For a sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of guidance, control, and dynamics control, and dynamics, 1995-11, Vol.18 (6), p.1280-1286
Hauptverfasser: Napolitano, Marcello R, Neppach, Charles, Casdorph, Van, Naylor, Steve, Innocenti, Mario, Silvestri, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1286
container_issue 6
container_start_page 1280
container_title Journal of guidance, control, and dynamics
container_volume 18
creator Napolitano, Marcello R
Neppach, Charles
Casdorph, Van
Naylor, Steve
Innocenti, Mario
Silvestri, Giovanni
description This paper presents a neural-network-based approach for the problem of sensor failure detection, identification, and accommodation for a flight control system without physical redundancy in the sensors. The approach is based on the introduction of on-line learning neural network estimators. For a system with n sensors, a combination of a main neural network and a set of n decentralized neural networks achieves the design goal. The main neural network and the ith decentralized neural network detect and identify a failure of the ith sensor, whereas the output of the ith decentralized neural network accommodates for the failure by replacing the signal from the failed ith sensor with its estimate. The on-line learning for these neural network architectures is performed using the extended back-propagation algorithm. The document describes successful simulations of the sensor failure detection, identification, and accommodation process following both soft and hard sensor failures. The simulations have shown remarkable capabilities for this neural scheme.
doi_str_mv 10.2514/3.21542
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27471483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313813898</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-f3c15ce72ad39c2b902a9434c9ebe0c76d5f81c9c2bf85912013375847ebe4c63</originalsourceid><addsrcrecordid>eNqNkVtLxDAQhYMouF7wLxQURbBrkkmb9lHEGyz6ok8-hGw6wa5tsyYt6r83ewFBfRAGDjPn4zDDEHLA6JhnTJzDmLNM8A0yYhlACkUhNsmISmBpRku6TXZCmFHKIGdyRJ7vcfC6STvs351_Tac6YJUE84ItJtb5JGAXolhdN4PHpMIeTV-77iypK-z62tZGr3rdVYk2xrWtq5ajPbJldRNwf6275On66vHyNp083NxdXkxSDTLvUwuGZQYl1xWUhk9LynUpQJgSp0iNzKvMFswsLFtkJeNxd5BZIWT0hclhlxyvcufevQ0YetXWwWDT6A7dEBSXQjJRwH_APMaKCB7-AGdu8F08QnFgUMQqi0idrCjjXQgerZr7utX-UzGqFr9QoJa_iOTRitS11t9Zv7HTv7C1reaVVXZomh4_evgCXbOU5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313813898</pqid></control><display><type>article</type><title>Neural-network-based scheme for sensor failure detection, identification, and accommodation</title><source>Alma/SFX Local Collection</source><creator>Napolitano, Marcello R ; Neppach, Charles ; Casdorph, Van ; Naylor, Steve ; Innocenti, Mario ; Silvestri, Giovanni</creator><creatorcontrib>Napolitano, Marcello R ; Neppach, Charles ; Casdorph, Van ; Naylor, Steve ; Innocenti, Mario ; Silvestri, Giovanni</creatorcontrib><description>This paper presents a neural-network-based approach for the problem of sensor failure detection, identification, and accommodation for a flight control system without physical redundancy in the sensors. The approach is based on the introduction of on-line learning neural network estimators. For a system with n sensors, a combination of a main neural network and a set of n decentralized neural networks achieves the design goal. The main neural network and the ith decentralized neural network detect and identify a failure of the ith sensor, whereas the output of the ith decentralized neural network accommodates for the failure by replacing the signal from the failed ith sensor with its estimate. The on-line learning for these neural network architectures is performed using the extended back-propagation algorithm. The document describes successful simulations of the sensor failure detection, identification, and accommodation process following both soft and hard sensor failures. The simulations have shown remarkable capabilities for this neural scheme.</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/3.21542</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Accelerometers ; Aircraft ; Algorithms ; Automation ; Back propagation ; Failure ; Failure detection ; Graduate students ; Identification ; Neural networks ; Propagation ; Sensors ; Simulation ; Velocity</subject><ispartof>Journal of guidance, control, and dynamics, 1995-11, Vol.18 (6), p.1280-1286</ispartof><rights>Copyright American Institute of Aeronautics and Astronautics Nov/Dec 1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-f3c15ce72ad39c2b902a9434c9ebe0c76d5f81c9c2bf85912013375847ebe4c63</citedby><cites>FETCH-LOGICAL-a376t-f3c15ce72ad39c2b902a9434c9ebe0c76d5f81c9c2bf85912013375847ebe4c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Napolitano, Marcello R</creatorcontrib><creatorcontrib>Neppach, Charles</creatorcontrib><creatorcontrib>Casdorph, Van</creatorcontrib><creatorcontrib>Naylor, Steve</creatorcontrib><creatorcontrib>Innocenti, Mario</creatorcontrib><creatorcontrib>Silvestri, Giovanni</creatorcontrib><title>Neural-network-based scheme for sensor failure detection, identification, and accommodation</title><title>Journal of guidance, control, and dynamics</title><description>This paper presents a neural-network-based approach for the problem of sensor failure detection, identification, and accommodation for a flight control system without physical redundancy in the sensors. The approach is based on the introduction of on-line learning neural network estimators. For a system with n sensors, a combination of a main neural network and a set of n decentralized neural networks achieves the design goal. The main neural network and the ith decentralized neural network detect and identify a failure of the ith sensor, whereas the output of the ith decentralized neural network accommodates for the failure by replacing the signal from the failed ith sensor with its estimate. The on-line learning for these neural network architectures is performed using the extended back-propagation algorithm. The document describes successful simulations of the sensor failure detection, identification, and accommodation process following both soft and hard sensor failures. The simulations have shown remarkable capabilities for this neural scheme.</description><subject>Accelerometers</subject><subject>Aircraft</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Back propagation</subject><subject>Failure</subject><subject>Failure detection</subject><subject>Graduate students</subject><subject>Identification</subject><subject>Neural networks</subject><subject>Propagation</subject><subject>Sensors</subject><subject>Simulation</subject><subject>Velocity</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqNkVtLxDAQhYMouF7wLxQURbBrkkmb9lHEGyz6ok8-hGw6wa5tsyYt6r83ewFBfRAGDjPn4zDDEHLA6JhnTJzDmLNM8A0yYhlACkUhNsmISmBpRku6TXZCmFHKIGdyRJ7vcfC6STvs351_Tac6YJUE84ItJtb5JGAXolhdN4PHpMIeTV-77iypK-z62tZGr3rdVYk2xrWtq5ajPbJldRNwf6275On66vHyNp083NxdXkxSDTLvUwuGZQYl1xWUhk9LynUpQJgSp0iNzKvMFswsLFtkJeNxd5BZIWT0hclhlxyvcufevQ0YetXWwWDT6A7dEBSXQjJRwH_APMaKCB7-AGdu8F08QnFgUMQqi0idrCjjXQgerZr7utX-UzGqFr9QoJa_iOTRitS11t9Zv7HTv7C1reaVVXZomh4_evgCXbOU5w</recordid><startdate>19951101</startdate><enddate>19951101</enddate><creator>Napolitano, Marcello R</creator><creator>Neppach, Charles</creator><creator>Casdorph, Van</creator><creator>Naylor, Steve</creator><creator>Innocenti, Mario</creator><creator>Silvestri, Giovanni</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19951101</creationdate><title>Neural-network-based scheme for sensor failure detection, identification, and accommodation</title><author>Napolitano, Marcello R ; Neppach, Charles ; Casdorph, Van ; Naylor, Steve ; Innocenti, Mario ; Silvestri, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-f3c15ce72ad39c2b902a9434c9ebe0c76d5f81c9c2bf85912013375847ebe4c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Accelerometers</topic><topic>Aircraft</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Back propagation</topic><topic>Failure</topic><topic>Failure detection</topic><topic>Graduate students</topic><topic>Identification</topic><topic>Neural networks</topic><topic>Propagation</topic><topic>Sensors</topic><topic>Simulation</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Napolitano, Marcello R</creatorcontrib><creatorcontrib>Neppach, Charles</creatorcontrib><creatorcontrib>Casdorph, Van</creatorcontrib><creatorcontrib>Naylor, Steve</creatorcontrib><creatorcontrib>Innocenti, Mario</creatorcontrib><creatorcontrib>Silvestri, Giovanni</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Napolitano, Marcello R</au><au>Neppach, Charles</au><au>Casdorph, Van</au><au>Naylor, Steve</au><au>Innocenti, Mario</au><au>Silvestri, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural-network-based scheme for sensor failure detection, identification, and accommodation</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>1995-11-01</date><risdate>1995</risdate><volume>18</volume><issue>6</issue><spage>1280</spage><epage>1286</epage><pages>1280-1286</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><abstract>This paper presents a neural-network-based approach for the problem of sensor failure detection, identification, and accommodation for a flight control system without physical redundancy in the sensors. The approach is based on the introduction of on-line learning neural network estimators. For a system with n sensors, a combination of a main neural network and a set of n decentralized neural networks achieves the design goal. The main neural network and the ith decentralized neural network detect and identify a failure of the ith sensor, whereas the output of the ith decentralized neural network accommodates for the failure by replacing the signal from the failed ith sensor with its estimate. The on-line learning for these neural network architectures is performed using the extended back-propagation algorithm. The document describes successful simulations of the sensor failure detection, identification, and accommodation process following both soft and hard sensor failures. The simulations have shown remarkable capabilities for this neural scheme.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/3.21542</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0731-5090
ispartof Journal of guidance, control, and dynamics, 1995-11, Vol.18 (6), p.1280-1286
issn 0731-5090
1533-3884
language eng
recordid cdi_proquest_miscellaneous_27471483
source Alma/SFX Local Collection
subjects Accelerometers
Aircraft
Algorithms
Automation
Back propagation
Failure
Failure detection
Graduate students
Identification
Neural networks
Propagation
Sensors
Simulation
Velocity
title Neural-network-based scheme for sensor failure detection, identification, and accommodation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural-network-based%20scheme%20for%20sensor%20failure%20detection,%20identification,%20and%20accommodation&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Napolitano,%20Marcello%20R&rft.date=1995-11-01&rft.volume=18&rft.issue=6&rft.spage=1280&rft.epage=1286&rft.pages=1280-1286&rft.issn=0731-5090&rft.eissn=1533-3884&rft_id=info:doi/10.2514/3.21542&rft_dat=%3Cproquest_cross%3E2313813898%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313813898&rft_id=info:pmid/&rfr_iscdi=true