Neural-network-based scheme for sensor failure detection, identification, and accommodation
This paper presents a neural-network-based approach for the problem of sensor failure detection, identification, and accommodation for a flight control system without physical redundancy in the sensors. The approach is based on the introduction of on-line learning neural network estimators. For a sy...
Gespeichert in:
Veröffentlicht in: | Journal of guidance, control, and dynamics control, and dynamics, 1995-11, Vol.18 (6), p.1280-1286 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1286 |
---|---|
container_issue | 6 |
container_start_page | 1280 |
container_title | Journal of guidance, control, and dynamics |
container_volume | 18 |
creator | Napolitano, Marcello R Neppach, Charles Casdorph, Van Naylor, Steve Innocenti, Mario Silvestri, Giovanni |
description | This paper presents a neural-network-based approach for the problem of sensor failure detection, identification, and accommodation for a flight control system without physical redundancy in the sensors. The approach is based on the introduction of on-line learning neural network estimators. For a system with n sensors, a combination of a main neural network and a set of n decentralized neural networks achieves the design goal. The main neural network and the ith decentralized neural network detect and identify a failure of the ith sensor, whereas the output of the ith decentralized neural network accommodates for the failure by replacing the signal from the failed ith sensor with its estimate. The on-line learning for these neural network architectures is performed using the extended back-propagation algorithm. The document describes successful simulations of the sensor failure detection, identification, and accommodation process following both soft and hard sensor failures. The simulations have shown remarkable capabilities for this neural scheme. |
doi_str_mv | 10.2514/3.21542 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27471483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313813898</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-f3c15ce72ad39c2b902a9434c9ebe0c76d5f81c9c2bf85912013375847ebe4c63</originalsourceid><addsrcrecordid>eNqNkVtLxDAQhYMouF7wLxQURbBrkkmb9lHEGyz6ok8-hGw6wa5tsyYt6r83ewFBfRAGDjPn4zDDEHLA6JhnTJzDmLNM8A0yYhlACkUhNsmISmBpRku6TXZCmFHKIGdyRJ7vcfC6STvs351_Tac6YJUE84ItJtb5JGAXolhdN4PHpMIeTV-77iypK-z62tZGr3rdVYk2xrWtq5ajPbJldRNwf6275On66vHyNp083NxdXkxSDTLvUwuGZQYl1xWUhk9LynUpQJgSp0iNzKvMFswsLFtkJeNxd5BZIWT0hclhlxyvcufevQ0YetXWwWDT6A7dEBSXQjJRwH_APMaKCB7-AGdu8F08QnFgUMQqi0idrCjjXQgerZr7utX-UzGqFr9QoJa_iOTRitS11t9Zv7HTv7C1reaVVXZomh4_evgCXbOU5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313813898</pqid></control><display><type>article</type><title>Neural-network-based scheme for sensor failure detection, identification, and accommodation</title><source>Alma/SFX Local Collection</source><creator>Napolitano, Marcello R ; Neppach, Charles ; Casdorph, Van ; Naylor, Steve ; Innocenti, Mario ; Silvestri, Giovanni</creator><creatorcontrib>Napolitano, Marcello R ; Neppach, Charles ; Casdorph, Van ; Naylor, Steve ; Innocenti, Mario ; Silvestri, Giovanni</creatorcontrib><description>This paper presents a neural-network-based approach for the problem of sensor failure detection, identification, and accommodation for a flight control system without physical redundancy in the sensors. The approach is based on the introduction of on-line learning neural network estimators. For a system with n sensors, a combination of a main neural network and a set of n decentralized neural networks achieves the design goal. The main neural network and the ith decentralized neural network detect and identify a failure of the ith sensor, whereas the output of the ith decentralized neural network accommodates for the failure by replacing the signal from the failed ith sensor with its estimate. The on-line learning for these neural network architectures is performed using the extended back-propagation algorithm. The document describes successful simulations of the sensor failure detection, identification, and accommodation process following both soft and hard sensor failures. The simulations have shown remarkable capabilities for this neural scheme.</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/3.21542</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Accelerometers ; Aircraft ; Algorithms ; Automation ; Back propagation ; Failure ; Failure detection ; Graduate students ; Identification ; Neural networks ; Propagation ; Sensors ; Simulation ; Velocity</subject><ispartof>Journal of guidance, control, and dynamics, 1995-11, Vol.18 (6), p.1280-1286</ispartof><rights>Copyright American Institute of Aeronautics and Astronautics Nov/Dec 1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-f3c15ce72ad39c2b902a9434c9ebe0c76d5f81c9c2bf85912013375847ebe4c63</citedby><cites>FETCH-LOGICAL-a376t-f3c15ce72ad39c2b902a9434c9ebe0c76d5f81c9c2bf85912013375847ebe4c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Napolitano, Marcello R</creatorcontrib><creatorcontrib>Neppach, Charles</creatorcontrib><creatorcontrib>Casdorph, Van</creatorcontrib><creatorcontrib>Naylor, Steve</creatorcontrib><creatorcontrib>Innocenti, Mario</creatorcontrib><creatorcontrib>Silvestri, Giovanni</creatorcontrib><title>Neural-network-based scheme for sensor failure detection, identification, and accommodation</title><title>Journal of guidance, control, and dynamics</title><description>This paper presents a neural-network-based approach for the problem of sensor failure detection, identification, and accommodation for a flight control system without physical redundancy in the sensors. The approach is based on the introduction of on-line learning neural network estimators. For a system with n sensors, a combination of a main neural network and a set of n decentralized neural networks achieves the design goal. The main neural network and the ith decentralized neural network detect and identify a failure of the ith sensor, whereas the output of the ith decentralized neural network accommodates for the failure by replacing the signal from the failed ith sensor with its estimate. The on-line learning for these neural network architectures is performed using the extended back-propagation algorithm. The document describes successful simulations of the sensor failure detection, identification, and accommodation process following both soft and hard sensor failures. The simulations have shown remarkable capabilities for this neural scheme.</description><subject>Accelerometers</subject><subject>Aircraft</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Back propagation</subject><subject>Failure</subject><subject>Failure detection</subject><subject>Graduate students</subject><subject>Identification</subject><subject>Neural networks</subject><subject>Propagation</subject><subject>Sensors</subject><subject>Simulation</subject><subject>Velocity</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqNkVtLxDAQhYMouF7wLxQURbBrkkmb9lHEGyz6ok8-hGw6wa5tsyYt6r83ewFBfRAGDjPn4zDDEHLA6JhnTJzDmLNM8A0yYhlACkUhNsmISmBpRku6TXZCmFHKIGdyRJ7vcfC6STvs351_Tac6YJUE84ItJtb5JGAXolhdN4PHpMIeTV-77iypK-z62tZGr3rdVYk2xrWtq5ajPbJldRNwf6275On66vHyNp083NxdXkxSDTLvUwuGZQYl1xWUhk9LynUpQJgSp0iNzKvMFswsLFtkJeNxd5BZIWT0hclhlxyvcufevQ0YetXWwWDT6A7dEBSXQjJRwH_APMaKCB7-AGdu8F08QnFgUMQqi0idrCjjXQgerZr7utX-UzGqFr9QoJa_iOTRitS11t9Zv7HTv7C1reaVVXZomh4_evgCXbOU5w</recordid><startdate>19951101</startdate><enddate>19951101</enddate><creator>Napolitano, Marcello R</creator><creator>Neppach, Charles</creator><creator>Casdorph, Van</creator><creator>Naylor, Steve</creator><creator>Innocenti, Mario</creator><creator>Silvestri, Giovanni</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19951101</creationdate><title>Neural-network-based scheme for sensor failure detection, identification, and accommodation</title><author>Napolitano, Marcello R ; Neppach, Charles ; Casdorph, Van ; Naylor, Steve ; Innocenti, Mario ; Silvestri, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-f3c15ce72ad39c2b902a9434c9ebe0c76d5f81c9c2bf85912013375847ebe4c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Accelerometers</topic><topic>Aircraft</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Back propagation</topic><topic>Failure</topic><topic>Failure detection</topic><topic>Graduate students</topic><topic>Identification</topic><topic>Neural networks</topic><topic>Propagation</topic><topic>Sensors</topic><topic>Simulation</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Napolitano, Marcello R</creatorcontrib><creatorcontrib>Neppach, Charles</creatorcontrib><creatorcontrib>Casdorph, Van</creatorcontrib><creatorcontrib>Naylor, Steve</creatorcontrib><creatorcontrib>Innocenti, Mario</creatorcontrib><creatorcontrib>Silvestri, Giovanni</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Napolitano, Marcello R</au><au>Neppach, Charles</au><au>Casdorph, Van</au><au>Naylor, Steve</au><au>Innocenti, Mario</au><au>Silvestri, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural-network-based scheme for sensor failure detection, identification, and accommodation</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>1995-11-01</date><risdate>1995</risdate><volume>18</volume><issue>6</issue><spage>1280</spage><epage>1286</epage><pages>1280-1286</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><abstract>This paper presents a neural-network-based approach for the problem of sensor failure detection, identification, and accommodation for a flight control system without physical redundancy in the sensors. The approach is based on the introduction of on-line learning neural network estimators. For a system with n sensors, a combination of a main neural network and a set of n decentralized neural networks achieves the design goal. The main neural network and the ith decentralized neural network detect and identify a failure of the ith sensor, whereas the output of the ith decentralized neural network accommodates for the failure by replacing the signal from the failed ith sensor with its estimate. The on-line learning for these neural network architectures is performed using the extended back-propagation algorithm. The document describes successful simulations of the sensor failure detection, identification, and accommodation process following both soft and hard sensor failures. The simulations have shown remarkable capabilities for this neural scheme.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/3.21542</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0731-5090 |
ispartof | Journal of guidance, control, and dynamics, 1995-11, Vol.18 (6), p.1280-1286 |
issn | 0731-5090 1533-3884 |
language | eng |
recordid | cdi_proquest_miscellaneous_27471483 |
source | Alma/SFX Local Collection |
subjects | Accelerometers Aircraft Algorithms Automation Back propagation Failure Failure detection Graduate students Identification Neural networks Propagation Sensors Simulation Velocity |
title | Neural-network-based scheme for sensor failure detection, identification, and accommodation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural-network-based%20scheme%20for%20sensor%20failure%20detection,%20identification,%20and%20accommodation&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Napolitano,%20Marcello%20R&rft.date=1995-11-01&rft.volume=18&rft.issue=6&rft.spage=1280&rft.epage=1286&rft.pages=1280-1286&rft.issn=0731-5090&rft.eissn=1533-3884&rft_id=info:doi/10.2514/3.21542&rft_dat=%3Cproquest_cross%3E2313813898%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313813898&rft_id=info:pmid/&rfr_iscdi=true |