Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state
Legume-rhizobium symbiosis in root nodules fixes nitrogen to satisfy the plant's nitrogen demands. The nodules' demand for energy is thought to determine nitrogen fixation rates. How this energy state is sensed to modulate nitrogen fixation is unknown. Here, we identified two soybean ( ) c...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2022-12, Vol.378 (6623), p.971-977 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 977 |
---|---|
container_issue | 6623 |
container_start_page | 971 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 378 |
creator | Ke, Xiaolong Xiao, Han Peng, Yaqi Wang, Jing Lv, Qi Wang, Xuelu |
description | Legume-rhizobium symbiosis in root nodules fixes nitrogen to satisfy the plant's nitrogen demands. The nodules' demand for energy is thought to determine nitrogen fixation rates. How this energy state is sensed to modulate nitrogen fixation is unknown. Here, we identified two soybean (
) cystathionine β-synthase domain-containing proteins, nodule AMP sensor 1 (GmNAS1) and NAS1-associated protein 1 (GmNAP1). In the high-nodule energy state, GmNAS1 and GmNAP1 form homodimers that interact with the nuclear factor-Y C (NF-YC) subunit (GmNFYC10a) on mitochondria and reduce its nuclear accumulation. Less nuclear GmNFYC10a leads to lower expression of glycolytic genes involved in pyruvate production, which modulates phosphoenolpyruvate allocation to favor nitrogen fixation. Insight into these pathways may help in the design of leguminous crops that have improved carbon use, nitrogen fixation, and growth. |
doi_str_mv | 10.1126/science.abq8591 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2746396546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2745113527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-d37a31969b0b9ada115658f5db925b585d217b65efbf777c5b23751b5cf640d13</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EoqUwsyFLLCxp_ZGz4xFVfElIMMDCEtmJ06akdmsniP57UjUwsNxJ9z53Oj0IXVIypZSJWSxq6wo71WabgaJHaEyJgkQxwo_RmBAukoxIGKGzGFeE9Jnip2jERQpplpIx-nhd-rhZeut8s9mF7ku3Fgerm8YXuq29w03tPiN2dRv8wjpc1d-HeejJiFuPg_ctdr7sGouts2Gxw7Htw3N0Uukm2ouhT9D7_d3b_DF5fnl4mt8-JwVn0CYll5pTJZQhRulSUwoCsgpKoxgYyKBkVBoBtjKVlLIAw7gEaqCoREpKyifo5nB3E_y2s7HN13UsbNNoZ30XcyZTwZWAvk7Q9T905bvg-u_2FFDKgcmemh2oIvgYg63yTajXOuxySvK99nzQng_a-42r4W5n1rb843898x_mFIGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2745113527</pqid></control><display><type>article</type><title>Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state</title><source>MEDLINE</source><source>Science Magazine</source><creator>Ke, Xiaolong ; Xiao, Han ; Peng, Yaqi ; Wang, Jing ; Lv, Qi ; Wang, Xuelu</creator><creatorcontrib>Ke, Xiaolong ; Xiao, Han ; Peng, Yaqi ; Wang, Jing ; Lv, Qi ; Wang, Xuelu</creatorcontrib><description>Legume-rhizobium symbiosis in root nodules fixes nitrogen to satisfy the plant's nitrogen demands. The nodules' demand for energy is thought to determine nitrogen fixation rates. How this energy state is sensed to modulate nitrogen fixation is unknown. Here, we identified two soybean (
) cystathionine β-synthase domain-containing proteins, nodule AMP sensor 1 (GmNAS1) and NAS1-associated protein 1 (GmNAP1). In the high-nodule energy state, GmNAS1 and GmNAP1 form homodimers that interact with the nuclear factor-Y C (NF-YC) subunit (GmNFYC10a) on mitochondria and reduce its nuclear accumulation. Less nuclear GmNFYC10a leads to lower expression of glycolytic genes involved in pyruvate production, which modulates phosphoenolpyruvate allocation to favor nitrogen fixation. Insight into these pathways may help in the design of leguminous crops that have improved carbon use, nitrogen fixation, and growth.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abq8591</identifier><identifier>PMID: 36454840</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Cystathionine beta-Synthase ; Energy ; Energy balance ; Glycine max - metabolism ; Glycolysis ; Legumes ; Nitrogen - metabolism ; Nitrogen Fixation ; Nitrogenation ; Nodules ; Phosphoenolpyruvate - metabolism ; Plant Proteins - chemistry ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Protein Domains ; Root nodules ; Root Nodules, Plant - metabolism ; Sensors ; Soybeans</subject><ispartof>Science (American Association for the Advancement of Science), 2022-12, Vol.378 (6623), p.971-977</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-d37a31969b0b9ada115658f5db925b585d217b65efbf777c5b23751b5cf640d13</citedby><cites>FETCH-LOGICAL-c325t-d37a31969b0b9ada115658f5db925b585d217b65efbf777c5b23751b5cf640d13</cites><orcidid>0000-0002-3073-8239 ; 0000-0003-2003-1077</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36454840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ke, Xiaolong</creatorcontrib><creatorcontrib>Xiao, Han</creatorcontrib><creatorcontrib>Peng, Yaqi</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Lv, Qi</creatorcontrib><creatorcontrib>Wang, Xuelu</creatorcontrib><title>Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Legume-rhizobium symbiosis in root nodules fixes nitrogen to satisfy the plant's nitrogen demands. The nodules' demand for energy is thought to determine nitrogen fixation rates. How this energy state is sensed to modulate nitrogen fixation is unknown. Here, we identified two soybean (
) cystathionine β-synthase domain-containing proteins, nodule AMP sensor 1 (GmNAS1) and NAS1-associated protein 1 (GmNAP1). In the high-nodule energy state, GmNAS1 and GmNAP1 form homodimers that interact with the nuclear factor-Y C (NF-YC) subunit (GmNFYC10a) on mitochondria and reduce its nuclear accumulation. Less nuclear GmNFYC10a leads to lower expression of glycolytic genes involved in pyruvate production, which modulates phosphoenolpyruvate allocation to favor nitrogen fixation. Insight into these pathways may help in the design of leguminous crops that have improved carbon use, nitrogen fixation, and growth.</description><subject>Cystathionine beta-Synthase</subject><subject>Energy</subject><subject>Energy balance</subject><subject>Glycine max - metabolism</subject><subject>Glycolysis</subject><subject>Legumes</subject><subject>Nitrogen - metabolism</subject><subject>Nitrogen Fixation</subject><subject>Nitrogenation</subject><subject>Nodules</subject><subject>Phosphoenolpyruvate - metabolism</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Protein Domains</subject><subject>Root nodules</subject><subject>Root Nodules, Plant - metabolism</subject><subject>Sensors</subject><subject>Soybeans</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkD1PwzAQhi0EoqUwsyFLLCxp_ZGz4xFVfElIMMDCEtmJ06akdmsniP57UjUwsNxJ9z53Oj0IXVIypZSJWSxq6wo71WabgaJHaEyJgkQxwo_RmBAukoxIGKGzGFeE9Jnip2jERQpplpIx-nhd-rhZeut8s9mF7ku3Fgerm8YXuq29w03tPiN2dRv8wjpc1d-HeejJiFuPg_ctdr7sGouts2Gxw7Htw3N0Uukm2ouhT9D7_d3b_DF5fnl4mt8-JwVn0CYll5pTJZQhRulSUwoCsgpKoxgYyKBkVBoBtjKVlLIAw7gEaqCoREpKyifo5nB3E_y2s7HN13UsbNNoZ30XcyZTwZWAvk7Q9T905bvg-u_2FFDKgcmemh2oIvgYg63yTajXOuxySvK99nzQng_a-42r4W5n1rb843898x_mFIGQ</recordid><startdate>20221202</startdate><enddate>20221202</enddate><creator>Ke, Xiaolong</creator><creator>Xiao, Han</creator><creator>Peng, Yaqi</creator><creator>Wang, Jing</creator><creator>Lv, Qi</creator><creator>Wang, Xuelu</creator><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3073-8239</orcidid><orcidid>https://orcid.org/0000-0003-2003-1077</orcidid></search><sort><creationdate>20221202</creationdate><title>Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state</title><author>Ke, Xiaolong ; Xiao, Han ; Peng, Yaqi ; Wang, Jing ; Lv, Qi ; Wang, Xuelu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-d37a31969b0b9ada115658f5db925b585d217b65efbf777c5b23751b5cf640d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cystathionine beta-Synthase</topic><topic>Energy</topic><topic>Energy balance</topic><topic>Glycine max - metabolism</topic><topic>Glycolysis</topic><topic>Legumes</topic><topic>Nitrogen - metabolism</topic><topic>Nitrogen Fixation</topic><topic>Nitrogenation</topic><topic>Nodules</topic><topic>Phosphoenolpyruvate - metabolism</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Protein Domains</topic><topic>Root nodules</topic><topic>Root Nodules, Plant - metabolism</topic><topic>Sensors</topic><topic>Soybeans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ke, Xiaolong</creatorcontrib><creatorcontrib>Xiao, Han</creatorcontrib><creatorcontrib>Peng, Yaqi</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Lv, Qi</creatorcontrib><creatorcontrib>Wang, Xuelu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ke, Xiaolong</au><au>Xiao, Han</au><au>Peng, Yaqi</au><au>Wang, Jing</au><au>Lv, Qi</au><au>Wang, Xuelu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2022-12-02</date><risdate>2022</risdate><volume>378</volume><issue>6623</issue><spage>971</spage><epage>977</epage><pages>971-977</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Legume-rhizobium symbiosis in root nodules fixes nitrogen to satisfy the plant's nitrogen demands. The nodules' demand for energy is thought to determine nitrogen fixation rates. How this energy state is sensed to modulate nitrogen fixation is unknown. Here, we identified two soybean (
) cystathionine β-synthase domain-containing proteins, nodule AMP sensor 1 (GmNAS1) and NAS1-associated protein 1 (GmNAP1). In the high-nodule energy state, GmNAS1 and GmNAP1 form homodimers that interact with the nuclear factor-Y C (NF-YC) subunit (GmNFYC10a) on mitochondria and reduce its nuclear accumulation. Less nuclear GmNFYC10a leads to lower expression of glycolytic genes involved in pyruvate production, which modulates phosphoenolpyruvate allocation to favor nitrogen fixation. Insight into these pathways may help in the design of leguminous crops that have improved carbon use, nitrogen fixation, and growth.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>36454840</pmid><doi>10.1126/science.abq8591</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3073-8239</orcidid><orcidid>https://orcid.org/0000-0003-2003-1077</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2022-12, Vol.378 (6623), p.971-977 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2746396546 |
source | MEDLINE; Science Magazine |
subjects | Cystathionine beta-Synthase Energy Energy balance Glycine max - metabolism Glycolysis Legumes Nitrogen - metabolism Nitrogen Fixation Nitrogenation Nodules Phosphoenolpyruvate - metabolism Plant Proteins - chemistry Plant Proteins - genetics Plant Proteins - metabolism Protein Domains Root nodules Root Nodules, Plant - metabolism Sensors Soybeans |
title | Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A55%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphoenolpyruvate%20reallocation%20links%20nitrogen%20fixation%20rates%20to%20root%20nodule%20energy%20state&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Ke,%20Xiaolong&rft.date=2022-12-02&rft.volume=378&rft.issue=6623&rft.spage=971&rft.epage=977&rft.pages=971-977&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abq8591&rft_dat=%3Cproquest_cross%3E2745113527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2745113527&rft_id=info:pmid/36454840&rfr_iscdi=true |