Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state

Legume-rhizobium symbiosis in root nodules fixes nitrogen to satisfy the plant's nitrogen demands. The nodules' demand for energy is thought to determine nitrogen fixation rates. How this energy state is sensed to modulate nitrogen fixation is unknown. Here, we identified two soybean ( ) c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2022-12, Vol.378 (6623), p.971-977
Hauptverfasser: Ke, Xiaolong, Xiao, Han, Peng, Yaqi, Wang, Jing, Lv, Qi, Wang, Xuelu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 977
container_issue 6623
container_start_page 971
container_title Science (American Association for the Advancement of Science)
container_volume 378
creator Ke, Xiaolong
Xiao, Han
Peng, Yaqi
Wang, Jing
Lv, Qi
Wang, Xuelu
description Legume-rhizobium symbiosis in root nodules fixes nitrogen to satisfy the plant's nitrogen demands. The nodules' demand for energy is thought to determine nitrogen fixation rates. How this energy state is sensed to modulate nitrogen fixation is unknown. Here, we identified two soybean ( ) cystathionine β-synthase domain-containing proteins, nodule AMP sensor 1 (GmNAS1) and NAS1-associated protein 1 (GmNAP1). In the high-nodule energy state, GmNAS1 and GmNAP1 form homodimers that interact with the nuclear factor-Y C (NF-YC) subunit (GmNFYC10a) on mitochondria and reduce its nuclear accumulation. Less nuclear GmNFYC10a leads to lower expression of glycolytic genes involved in pyruvate production, which modulates phosphoenolpyruvate allocation to favor nitrogen fixation. Insight into these pathways may help in the design of leguminous crops that have improved carbon use, nitrogen fixation, and growth.
doi_str_mv 10.1126/science.abq8591
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2746396546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2745113527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-d37a31969b0b9ada115658f5db925b585d217b65efbf777c5b23751b5cf640d13</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EoqUwsyFLLCxp_ZGz4xFVfElIMMDCEtmJ06akdmsniP57UjUwsNxJ9z53Oj0IXVIypZSJWSxq6wo71WabgaJHaEyJgkQxwo_RmBAukoxIGKGzGFeE9Jnip2jERQpplpIx-nhd-rhZeut8s9mF7ku3Fgerm8YXuq29w03tPiN2dRv8wjpc1d-HeejJiFuPg_ctdr7sGouts2Gxw7Htw3N0Uukm2ouhT9D7_d3b_DF5fnl4mt8-JwVn0CYll5pTJZQhRulSUwoCsgpKoxgYyKBkVBoBtjKVlLIAw7gEaqCoREpKyifo5nB3E_y2s7HN13UsbNNoZ30XcyZTwZWAvk7Q9T905bvg-u_2FFDKgcmemh2oIvgYg63yTajXOuxySvK99nzQng_a-42r4W5n1rb843898x_mFIGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2745113527</pqid></control><display><type>article</type><title>Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state</title><source>MEDLINE</source><source>Science Magazine</source><creator>Ke, Xiaolong ; Xiao, Han ; Peng, Yaqi ; Wang, Jing ; Lv, Qi ; Wang, Xuelu</creator><creatorcontrib>Ke, Xiaolong ; Xiao, Han ; Peng, Yaqi ; Wang, Jing ; Lv, Qi ; Wang, Xuelu</creatorcontrib><description>Legume-rhizobium symbiosis in root nodules fixes nitrogen to satisfy the plant's nitrogen demands. The nodules' demand for energy is thought to determine nitrogen fixation rates. How this energy state is sensed to modulate nitrogen fixation is unknown. Here, we identified two soybean ( ) cystathionine β-synthase domain-containing proteins, nodule AMP sensor 1 (GmNAS1) and NAS1-associated protein 1 (GmNAP1). In the high-nodule energy state, GmNAS1 and GmNAP1 form homodimers that interact with the nuclear factor-Y C (NF-YC) subunit (GmNFYC10a) on mitochondria and reduce its nuclear accumulation. Less nuclear GmNFYC10a leads to lower expression of glycolytic genes involved in pyruvate production, which modulates phosphoenolpyruvate allocation to favor nitrogen fixation. Insight into these pathways may help in the design of leguminous crops that have improved carbon use, nitrogen fixation, and growth.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abq8591</identifier><identifier>PMID: 36454840</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Cystathionine beta-Synthase ; Energy ; Energy balance ; Glycine max - metabolism ; Glycolysis ; Legumes ; Nitrogen - metabolism ; Nitrogen Fixation ; Nitrogenation ; Nodules ; Phosphoenolpyruvate - metabolism ; Plant Proteins - chemistry ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Protein Domains ; Root nodules ; Root Nodules, Plant - metabolism ; Sensors ; Soybeans</subject><ispartof>Science (American Association for the Advancement of Science), 2022-12, Vol.378 (6623), p.971-977</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-d37a31969b0b9ada115658f5db925b585d217b65efbf777c5b23751b5cf640d13</citedby><cites>FETCH-LOGICAL-c325t-d37a31969b0b9ada115658f5db925b585d217b65efbf777c5b23751b5cf640d13</cites><orcidid>0000-0002-3073-8239 ; 0000-0003-2003-1077</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36454840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ke, Xiaolong</creatorcontrib><creatorcontrib>Xiao, Han</creatorcontrib><creatorcontrib>Peng, Yaqi</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Lv, Qi</creatorcontrib><creatorcontrib>Wang, Xuelu</creatorcontrib><title>Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Legume-rhizobium symbiosis in root nodules fixes nitrogen to satisfy the plant's nitrogen demands. The nodules' demand for energy is thought to determine nitrogen fixation rates. How this energy state is sensed to modulate nitrogen fixation is unknown. Here, we identified two soybean ( ) cystathionine β-synthase domain-containing proteins, nodule AMP sensor 1 (GmNAS1) and NAS1-associated protein 1 (GmNAP1). In the high-nodule energy state, GmNAS1 and GmNAP1 form homodimers that interact with the nuclear factor-Y C (NF-YC) subunit (GmNFYC10a) on mitochondria and reduce its nuclear accumulation. Less nuclear GmNFYC10a leads to lower expression of glycolytic genes involved in pyruvate production, which modulates phosphoenolpyruvate allocation to favor nitrogen fixation. Insight into these pathways may help in the design of leguminous crops that have improved carbon use, nitrogen fixation, and growth.</description><subject>Cystathionine beta-Synthase</subject><subject>Energy</subject><subject>Energy balance</subject><subject>Glycine max - metabolism</subject><subject>Glycolysis</subject><subject>Legumes</subject><subject>Nitrogen - metabolism</subject><subject>Nitrogen Fixation</subject><subject>Nitrogenation</subject><subject>Nodules</subject><subject>Phosphoenolpyruvate - metabolism</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Protein Domains</subject><subject>Root nodules</subject><subject>Root Nodules, Plant - metabolism</subject><subject>Sensors</subject><subject>Soybeans</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkD1PwzAQhi0EoqUwsyFLLCxp_ZGz4xFVfElIMMDCEtmJ06akdmsniP57UjUwsNxJ9z53Oj0IXVIypZSJWSxq6wo71WabgaJHaEyJgkQxwo_RmBAukoxIGKGzGFeE9Jnip2jERQpplpIx-nhd-rhZeut8s9mF7ku3Fgerm8YXuq29w03tPiN2dRv8wjpc1d-HeejJiFuPg_ctdr7sGouts2Gxw7Htw3N0Uukm2ouhT9D7_d3b_DF5fnl4mt8-JwVn0CYll5pTJZQhRulSUwoCsgpKoxgYyKBkVBoBtjKVlLIAw7gEaqCoREpKyifo5nB3E_y2s7HN13UsbNNoZ30XcyZTwZWAvk7Q9T905bvg-u_2FFDKgcmemh2oIvgYg63yTajXOuxySvK99nzQng_a-42r4W5n1rb843898x_mFIGQ</recordid><startdate>20221202</startdate><enddate>20221202</enddate><creator>Ke, Xiaolong</creator><creator>Xiao, Han</creator><creator>Peng, Yaqi</creator><creator>Wang, Jing</creator><creator>Lv, Qi</creator><creator>Wang, Xuelu</creator><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3073-8239</orcidid><orcidid>https://orcid.org/0000-0003-2003-1077</orcidid></search><sort><creationdate>20221202</creationdate><title>Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state</title><author>Ke, Xiaolong ; Xiao, Han ; Peng, Yaqi ; Wang, Jing ; Lv, Qi ; Wang, Xuelu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-d37a31969b0b9ada115658f5db925b585d217b65efbf777c5b23751b5cf640d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cystathionine beta-Synthase</topic><topic>Energy</topic><topic>Energy balance</topic><topic>Glycine max - metabolism</topic><topic>Glycolysis</topic><topic>Legumes</topic><topic>Nitrogen - metabolism</topic><topic>Nitrogen Fixation</topic><topic>Nitrogenation</topic><topic>Nodules</topic><topic>Phosphoenolpyruvate - metabolism</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Protein Domains</topic><topic>Root nodules</topic><topic>Root Nodules, Plant - metabolism</topic><topic>Sensors</topic><topic>Soybeans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ke, Xiaolong</creatorcontrib><creatorcontrib>Xiao, Han</creatorcontrib><creatorcontrib>Peng, Yaqi</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Lv, Qi</creatorcontrib><creatorcontrib>Wang, Xuelu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ke, Xiaolong</au><au>Xiao, Han</au><au>Peng, Yaqi</au><au>Wang, Jing</au><au>Lv, Qi</au><au>Wang, Xuelu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2022-12-02</date><risdate>2022</risdate><volume>378</volume><issue>6623</issue><spage>971</spage><epage>977</epage><pages>971-977</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Legume-rhizobium symbiosis in root nodules fixes nitrogen to satisfy the plant's nitrogen demands. The nodules' demand for energy is thought to determine nitrogen fixation rates. How this energy state is sensed to modulate nitrogen fixation is unknown. Here, we identified two soybean ( ) cystathionine β-synthase domain-containing proteins, nodule AMP sensor 1 (GmNAS1) and NAS1-associated protein 1 (GmNAP1). In the high-nodule energy state, GmNAS1 and GmNAP1 form homodimers that interact with the nuclear factor-Y C (NF-YC) subunit (GmNFYC10a) on mitochondria and reduce its nuclear accumulation. Less nuclear GmNFYC10a leads to lower expression of glycolytic genes involved in pyruvate production, which modulates phosphoenolpyruvate allocation to favor nitrogen fixation. Insight into these pathways may help in the design of leguminous crops that have improved carbon use, nitrogen fixation, and growth.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>36454840</pmid><doi>10.1126/science.abq8591</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3073-8239</orcidid><orcidid>https://orcid.org/0000-0003-2003-1077</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2022-12, Vol.378 (6623), p.971-977
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2746396546
source MEDLINE; Science Magazine
subjects Cystathionine beta-Synthase
Energy
Energy balance
Glycine max - metabolism
Glycolysis
Legumes
Nitrogen - metabolism
Nitrogen Fixation
Nitrogenation
Nodules
Phosphoenolpyruvate - metabolism
Plant Proteins - chemistry
Plant Proteins - genetics
Plant Proteins - metabolism
Protein Domains
Root nodules
Root Nodules, Plant - metabolism
Sensors
Soybeans
title Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A55%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphoenolpyruvate%20reallocation%20links%20nitrogen%20fixation%20rates%20to%20root%20nodule%20energy%20state&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Ke,%20Xiaolong&rft.date=2022-12-02&rft.volume=378&rft.issue=6623&rft.spage=971&rft.epage=977&rft.pages=971-977&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abq8591&rft_dat=%3Cproquest_cross%3E2745113527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2745113527&rft_id=info:pmid/36454840&rfr_iscdi=true