Usefulness of Applying Partial Least Squares Regression to T2 Relaxation Curves for Predicting the Solid form Content in Binary Physical Mixtures

This study applied partial least squares (PLS) regression to nuclear magnetic resonance (NMR) relaxation curves to quantify the free base of an active pharmaceutical ingredient powder. We measured the T2 relaxation of intact and moisture-absorbed physical mixtures of tetracaine free base (TC) and it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pharmaceutical sciences 2023-04, Vol.112 (4), p.1041-1051
Hauptverfasser: Chiba, Yuya, Okada, Kotaro, Hayashi, Yoshihiro, Kumada, Shungo, Onuki, Yoshinori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1051
container_issue 4
container_start_page 1041
container_title Journal of pharmaceutical sciences
container_volume 112
creator Chiba, Yuya
Okada, Kotaro
Hayashi, Yoshihiro
Kumada, Shungo
Onuki, Yoshinori
description This study applied partial least squares (PLS) regression to nuclear magnetic resonance (NMR) relaxation curves to quantify the free base of an active pharmaceutical ingredient powder. We measured the T2 relaxation of intact and moisture-absorbed physical mixtures of tetracaine free base (TC) and its hydrochloride salt (TC·HCl). The obtained T2 relaxation curves were analyzed by two methods, one using a previously reported T2 relaxation time (T2), and the other using PLS regression. The accuracy of estimating TC was inadequate when using previous T2 values because the moisture-absorbed physical mixtures showed biphasic T2 relaxation curves. By contrast, the entire measured whole of the T2 relaxation curves was used as input variables and analyzed by PLS regression to quantify the content of TC in the moisture-absorbed TC/TC·HCl. Based on scatterplots of theoretical versus predicted TC, the obtained PLS model exhibited acceptable coefficients of determination and relatively low root mean squared error values for calibration and validation data. The statistical values confirmed that an accurate and reliable PLS model was created to quantify TC in even moisture-absorbed TC/TC·HCl. The bench-top low-field NMR instrument used to apply PLS regression to the T2 relaxation curve may be a promising tool in process analytical technology.
doi_str_mv 10.1016/j.xphs.2022.11.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2746393258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022354922005391</els_id><sourcerecordid>2746393258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3588-cb120badc9b1dfb8708289f603d0032acc5b3a43a5a75bf07b189f79e0119c803</originalsourceid><addsrcrecordid>eNp9kMlu2zAQhomiBeomeYGceOxF6pA0tQC9pEY3wEWNJjkTFDWKacikQlKB_Rh541Jwzz0NMP_C4UfILYOSAas-HcrTtI8lB85LxkrgzRuyYpJDUQGr35IVZKUQct2-Jx9iPABABVKuyOtjxGEeHcZI_UDvpmk8W_dEdzokq0e6RR0TvX-edcBI_-BTHtF6R5OnDzwvRn3SaVls5vCSLYMPdBewtyYtPWmP9N6Ptl-EI914l9Alah39Yp0OZ7rbn6M1-aVf9pTm3H5N3g16jHjzb16Rx29fHzY_iu3v7z83d9vCCNk0hekYh073pu1YP3RNDQ1v2qEC0QMIro2RndBroaWuZTdA3bEs1y0CY61pQFyRj5feKfjnGWNSRxsNjqN26OeoeL2uRCu4bLKVX6wm-BgDDmoK9pivVwzUwl8d1MJfLfwVYyrzz6HPlxDmT7xYDCoai85kNAFNUr23_4v_BczQkQc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2746393258</pqid></control><display><type>article</type><title>Usefulness of Applying Partial Least Squares Regression to T2 Relaxation Curves for Predicting the Solid form Content in Binary Physical Mixtures</title><source>Alma/SFX Local Collection</source><creator>Chiba, Yuya ; Okada, Kotaro ; Hayashi, Yoshihiro ; Kumada, Shungo ; Onuki, Yoshinori</creator><creatorcontrib>Chiba, Yuya ; Okada, Kotaro ; Hayashi, Yoshihiro ; Kumada, Shungo ; Onuki, Yoshinori</creatorcontrib><description>This study applied partial least squares (PLS) regression to nuclear magnetic resonance (NMR) relaxation curves to quantify the free base of an active pharmaceutical ingredient powder. We measured the T2 relaxation of intact and moisture-absorbed physical mixtures of tetracaine free base (TC) and its hydrochloride salt (TC·HCl). The obtained T2 relaxation curves were analyzed by two methods, one using a previously reported T2 relaxation time (T2), and the other using PLS regression. The accuracy of estimating TC was inadequate when using previous T2 values because the moisture-absorbed physical mixtures showed biphasic T2 relaxation curves. By contrast, the entire measured whole of the T2 relaxation curves was used as input variables and analyzed by PLS regression to quantify the content of TC in the moisture-absorbed TC/TC·HCl. Based on scatterplots of theoretical versus predicted TC, the obtained PLS model exhibited acceptable coefficients of determination and relatively low root mean squared error values for calibration and validation data. The statistical values confirmed that an accurate and reliable PLS model was created to quantify TC in even moisture-absorbed TC/TC·HCl. The bench-top low-field NMR instrument used to apply PLS regression to the T2 relaxation curve may be a promising tool in process analytical technology.</description><identifier>ISSN: 0022-3549</identifier><identifier>EISSN: 1520-6017</identifier><identifier>DOI: 10.1016/j.xphs.2022.11.028</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Active pharmaceutical ingredient ; NMR relaxometry ; Partial least squares regression ; Process analytical technology ; Solid form ; T2 relaxation</subject><ispartof>Journal of pharmaceutical sciences, 2023-04, Vol.112 (4), p.1041-1051</ispartof><rights>2022 American Pharmacists Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3588-cb120badc9b1dfb8708289f603d0032acc5b3a43a5a75bf07b189f79e0119c803</citedby><cites>FETCH-LOGICAL-c3588-cb120badc9b1dfb8708289f603d0032acc5b3a43a5a75bf07b189f79e0119c803</cites><orcidid>0000-0003-0800-2273 ; 0000-0003-0583-7072 ; 0000-0002-8236-0872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27902,27903</link.rule.ids></links><search><creatorcontrib>Chiba, Yuya</creatorcontrib><creatorcontrib>Okada, Kotaro</creatorcontrib><creatorcontrib>Hayashi, Yoshihiro</creatorcontrib><creatorcontrib>Kumada, Shungo</creatorcontrib><creatorcontrib>Onuki, Yoshinori</creatorcontrib><title>Usefulness of Applying Partial Least Squares Regression to T2 Relaxation Curves for Predicting the Solid form Content in Binary Physical Mixtures</title><title>Journal of pharmaceutical sciences</title><description>This study applied partial least squares (PLS) regression to nuclear magnetic resonance (NMR) relaxation curves to quantify the free base of an active pharmaceutical ingredient powder. We measured the T2 relaxation of intact and moisture-absorbed physical mixtures of tetracaine free base (TC) and its hydrochloride salt (TC·HCl). The obtained T2 relaxation curves were analyzed by two methods, one using a previously reported T2 relaxation time (T2), and the other using PLS regression. The accuracy of estimating TC was inadequate when using previous T2 values because the moisture-absorbed physical mixtures showed biphasic T2 relaxation curves. By contrast, the entire measured whole of the T2 relaxation curves was used as input variables and analyzed by PLS regression to quantify the content of TC in the moisture-absorbed TC/TC·HCl. Based on scatterplots of theoretical versus predicted TC, the obtained PLS model exhibited acceptable coefficients of determination and relatively low root mean squared error values for calibration and validation data. The statistical values confirmed that an accurate and reliable PLS model was created to quantify TC in even moisture-absorbed TC/TC·HCl. The bench-top low-field NMR instrument used to apply PLS regression to the T2 relaxation curve may be a promising tool in process analytical technology.</description><subject>Active pharmaceutical ingredient</subject><subject>NMR relaxometry</subject><subject>Partial least squares regression</subject><subject>Process analytical technology</subject><subject>Solid form</subject><subject>T2 relaxation</subject><issn>0022-3549</issn><issn>1520-6017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMlu2zAQhomiBeomeYGceOxF6pA0tQC9pEY3wEWNJjkTFDWKacikQlKB_Rh541Jwzz0NMP_C4UfILYOSAas-HcrTtI8lB85LxkrgzRuyYpJDUQGr35IVZKUQct2-Jx9iPABABVKuyOtjxGEeHcZI_UDvpmk8W_dEdzokq0e6RR0TvX-edcBI_-BTHtF6R5OnDzwvRn3SaVls5vCSLYMPdBewtyYtPWmP9N6Ptl-EI914l9Alah39Yp0OZ7rbn6M1-aVf9pTm3H5N3g16jHjzb16Rx29fHzY_iu3v7z83d9vCCNk0hekYh073pu1YP3RNDQ1v2qEC0QMIro2RndBroaWuZTdA3bEs1y0CY61pQFyRj5feKfjnGWNSRxsNjqN26OeoeL2uRCu4bLKVX6wm-BgDDmoK9pivVwzUwl8d1MJfLfwVYyrzz6HPlxDmT7xYDCoai85kNAFNUr23_4v_BczQkQc</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Chiba, Yuya</creator><creator>Okada, Kotaro</creator><creator>Hayashi, Yoshihiro</creator><creator>Kumada, Shungo</creator><creator>Onuki, Yoshinori</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0800-2273</orcidid><orcidid>https://orcid.org/0000-0003-0583-7072</orcidid><orcidid>https://orcid.org/0000-0002-8236-0872</orcidid></search><sort><creationdate>202304</creationdate><title>Usefulness of Applying Partial Least Squares Regression to T2 Relaxation Curves for Predicting the Solid form Content in Binary Physical Mixtures</title><author>Chiba, Yuya ; Okada, Kotaro ; Hayashi, Yoshihiro ; Kumada, Shungo ; Onuki, Yoshinori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3588-cb120badc9b1dfb8708289f603d0032acc5b3a43a5a75bf07b189f79e0119c803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Active pharmaceutical ingredient</topic><topic>NMR relaxometry</topic><topic>Partial least squares regression</topic><topic>Process analytical technology</topic><topic>Solid form</topic><topic>T2 relaxation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiba, Yuya</creatorcontrib><creatorcontrib>Okada, Kotaro</creatorcontrib><creatorcontrib>Hayashi, Yoshihiro</creatorcontrib><creatorcontrib>Kumada, Shungo</creatorcontrib><creatorcontrib>Onuki, Yoshinori</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of pharmaceutical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiba, Yuya</au><au>Okada, Kotaro</au><au>Hayashi, Yoshihiro</au><au>Kumada, Shungo</au><au>Onuki, Yoshinori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Usefulness of Applying Partial Least Squares Regression to T2 Relaxation Curves for Predicting the Solid form Content in Binary Physical Mixtures</atitle><jtitle>Journal of pharmaceutical sciences</jtitle><date>2023-04</date><risdate>2023</risdate><volume>112</volume><issue>4</issue><spage>1041</spage><epage>1051</epage><pages>1041-1051</pages><issn>0022-3549</issn><eissn>1520-6017</eissn><abstract>This study applied partial least squares (PLS) regression to nuclear magnetic resonance (NMR) relaxation curves to quantify the free base of an active pharmaceutical ingredient powder. We measured the T2 relaxation of intact and moisture-absorbed physical mixtures of tetracaine free base (TC) and its hydrochloride salt (TC·HCl). The obtained T2 relaxation curves were analyzed by two methods, one using a previously reported T2 relaxation time (T2), and the other using PLS regression. The accuracy of estimating TC was inadequate when using previous T2 values because the moisture-absorbed physical mixtures showed biphasic T2 relaxation curves. By contrast, the entire measured whole of the T2 relaxation curves was used as input variables and analyzed by PLS regression to quantify the content of TC in the moisture-absorbed TC/TC·HCl. Based on scatterplots of theoretical versus predicted TC, the obtained PLS model exhibited acceptable coefficients of determination and relatively low root mean squared error values for calibration and validation data. The statistical values confirmed that an accurate and reliable PLS model was created to quantify TC in even moisture-absorbed TC/TC·HCl. The bench-top low-field NMR instrument used to apply PLS regression to the T2 relaxation curve may be a promising tool in process analytical technology.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.xphs.2022.11.028</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0800-2273</orcidid><orcidid>https://orcid.org/0000-0003-0583-7072</orcidid><orcidid>https://orcid.org/0000-0002-8236-0872</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3549
ispartof Journal of pharmaceutical sciences, 2023-04, Vol.112 (4), p.1041-1051
issn 0022-3549
1520-6017
language eng
recordid cdi_proquest_miscellaneous_2746393258
source Alma/SFX Local Collection
subjects Active pharmaceutical ingredient
NMR relaxometry
Partial least squares regression
Process analytical technology
Solid form
T2 relaxation
title Usefulness of Applying Partial Least Squares Regression to T2 Relaxation Curves for Predicting the Solid form Content in Binary Physical Mixtures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A45%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Usefulness%20of%20Applying%20Partial%20Least%20Squares%20Regression%20to%20T2%20Relaxation%20Curves%20for%20Predicting%20the%20Solid%20form%20Content%20in%20Binary%20Physical%20Mixtures&rft.jtitle=Journal%20of%20pharmaceutical%20sciences&rft.au=Chiba,%20Yuya&rft.date=2023-04&rft.volume=112&rft.issue=4&rft.spage=1041&rft.epage=1051&rft.pages=1041-1051&rft.issn=0022-3549&rft.eissn=1520-6017&rft_id=info:doi/10.1016/j.xphs.2022.11.028&rft_dat=%3Cproquest_cross%3E2746393258%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2746393258&rft_id=info:pmid/&rft_els_id=S0022354922005391&rfr_iscdi=true