An ER-targeted “reserve-release” fluorogen for topological quantification of reticulophagy

The endoplasmic reticulum's (ER) dynamic nature, essential for maintaining cellular homeostasis, can be influenced by stress-induced damage, which can be assessed by examining the morphology of ER dynamics and, more locally, ER properties such as hydrophobicity, viscosity, and polarity. Althoug...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2023-01, Vol.292, p.121929-121929, Article 121929
Hauptverfasser: Fang, Hongbao, Hu, Lianting, Chen, Qixin, Geng, Shanshan, Qiu, Kangqiang, Wang, Chengjun, Hao, Mingang, Tian, Zhiqi, Chen, Huimin, Liu, Lei, Guan, Jun-Lin, Chen, Yuncong, Dong, Lei, Guo, Zijian, He, Weijiang, Diao, Jiajie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121929
container_issue
container_start_page 121929
container_title Biomaterials
container_volume 292
creator Fang, Hongbao
Hu, Lianting
Chen, Qixin
Geng, Shanshan
Qiu, Kangqiang
Wang, Chengjun
Hao, Mingang
Tian, Zhiqi
Chen, Huimin
Liu, Lei
Guan, Jun-Lin
Chen, Yuncong
Dong, Lei
Guo, Zijian
He, Weijiang
Diao, Jiajie
description The endoplasmic reticulum's (ER) dynamic nature, essential for maintaining cellular homeostasis, can be influenced by stress-induced damage, which can be assessed by examining the morphology of ER dynamics and, more locally, ER properties such as hydrophobicity, viscosity, and polarity. Although numerous ER-specific chemical probes have been developed to monitor the ER's physical and chemical parameters, the quantitative detection and super-resolution imaging of its local hydrophobicity have yet to be explored. Here, we describe a photostable ER-targeted probe with high signal-to-noise ratio for super-resolution imaging that can specifically respond to changes in ER hydrophobicity under stress based on a “reserve-release” mechanism. The probe shows an excellent ability to target ER over commercial ER dyes and can be used to track local changes of hydrophobicity by fluorescence intensity and morphology during the selective autophagy of ER (i.e., reticulophagy). By correlating the level and location of ER damage with the distribution of fluorescence intensity, we were able to assess reticulophagy at the subcellular level. Beyond that, we developed a topological analytical tool adaptable to any ER probe for detecting structural changes in ER and thus quantitatively identifying reticulophagy. The algorithm-assisted tool can also be adapted to a wide range of molecular probes and organelles. Altogether, the new probe and analytical strategy described here show promise for the quantitative detection and analysis of subtle ER damage and stress. [Display omitted] •We developed a “reserve-release” mechanism for ER-BDP, a photostable and low-toxicity probe for super-resolution imaging.•This ER-targeting lipophilic fluorescent probe is able to sense local hydrophobicity change caused by reticulophagy.•We provide new insights into the design of super-resolution imaging probes for quantifying the subcellular microenvironment.•A new topological parameter has been introduced for a wide range of molecular probes and organelles.
doi_str_mv 10.1016/j.biomaterials.2022.121929
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2746391089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961222005695</els_id><sourcerecordid>2746391089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-9ba62384296be79caaf6899b7ce2972137291161dd066edd04ac24c4643978e33</originalsourceid><addsrcrecordid>eNqNkctKxDAUhoMoOl5eQYorNx1za5q4E-8wIIhuDWl6OmboNGOSCu58EH05n8TKjOJON-cC3zn_4fwIHRA8JpiIo9m4cn5uEgRn2jimmNIxoURRtYZGRJYyLxQu1tEIE05zJQjdQtsxzvDQY0430RYTvCi4LEfo4aTLzm_zZMIUEtTZx-tbgAjhGfIALZgIH6_vWdP2PvgpdFnjQ5b8wrd-6qxps6fedMk1Q52c7zLfZAGSs33rF49m-rKLNprhRthb5R10f3F-d3qVT24ur09PJrnlhKVcVUZQJjlVooJSWWMaIZWqSgtUlZSwkipCBKlrLAQMkRtLueWCM1VKYGwHHS73LoJ_6iEmPXfRQtuaDnwfNSMFk0zKAv-J0pILpgiWakCPl6gNPsYAjV4ENzfhRROsv6zQM_3bCv1lhV5aMQzvr3T6ag71z-j37wfgbAnA8JhnB0FH66CzULsANunau__ofAIlYqNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2746391089</pqid></control><display><type>article</type><title>An ER-targeted “reserve-release” fluorogen for topological quantification of reticulophagy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Fang, Hongbao ; Hu, Lianting ; Chen, Qixin ; Geng, Shanshan ; Qiu, Kangqiang ; Wang, Chengjun ; Hao, Mingang ; Tian, Zhiqi ; Chen, Huimin ; Liu, Lei ; Guan, Jun-Lin ; Chen, Yuncong ; Dong, Lei ; Guo, Zijian ; He, Weijiang ; Diao, Jiajie</creator><creatorcontrib>Fang, Hongbao ; Hu, Lianting ; Chen, Qixin ; Geng, Shanshan ; Qiu, Kangqiang ; Wang, Chengjun ; Hao, Mingang ; Tian, Zhiqi ; Chen, Huimin ; Liu, Lei ; Guan, Jun-Lin ; Chen, Yuncong ; Dong, Lei ; Guo, Zijian ; He, Weijiang ; Diao, Jiajie</creatorcontrib><description>The endoplasmic reticulum's (ER) dynamic nature, essential for maintaining cellular homeostasis, can be influenced by stress-induced damage, which can be assessed by examining the morphology of ER dynamics and, more locally, ER properties such as hydrophobicity, viscosity, and polarity. Although numerous ER-specific chemical probes have been developed to monitor the ER's physical and chemical parameters, the quantitative detection and super-resolution imaging of its local hydrophobicity have yet to be explored. Here, we describe a photostable ER-targeted probe with high signal-to-noise ratio for super-resolution imaging that can specifically respond to changes in ER hydrophobicity under stress based on a “reserve-release” mechanism. The probe shows an excellent ability to target ER over commercial ER dyes and can be used to track local changes of hydrophobicity by fluorescence intensity and morphology during the selective autophagy of ER (i.e., reticulophagy). By correlating the level and location of ER damage with the distribution of fluorescence intensity, we were able to assess reticulophagy at the subcellular level. Beyond that, we developed a topological analytical tool adaptable to any ER probe for detecting structural changes in ER and thus quantitatively identifying reticulophagy. The algorithm-assisted tool can also be adapted to a wide range of molecular probes and organelles. Altogether, the new probe and analytical strategy described here show promise for the quantitative detection and analysis of subtle ER damage and stress. [Display omitted] •We developed a “reserve-release” mechanism for ER-BDP, a photostable and low-toxicity probe for super-resolution imaging.•This ER-targeting lipophilic fluorescent probe is able to sense local hydrophobicity change caused by reticulophagy.•We provide new insights into the design of super-resolution imaging probes for quantifying the subcellular microenvironment.•A new topological parameter has been introduced for a wide range of molecular probes and organelles.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2022.121929</identifier><identifier>PMID: 36455487</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Autophagy ; biocompatible materials ; Endoplasmic Reticulum ; Endoplasmic Reticulum Stress ; ER dynamics ; fluorescence ; homeostasis ; hydrophobicity ; Molecular probe ; Reticulophagy ; signal-to-noise ratio ; Super-resolution imaging ; Topological analysis ; topology ; viscosity</subject><ispartof>Biomaterials, 2023-01, Vol.292, p.121929-121929, Article 121929</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-9ba62384296be79caaf6899b7ce2972137291161dd066edd04ac24c4643978e33</citedby><cites>FETCH-LOGICAL-c413t-9ba62384296be79caaf6899b7ce2972137291161dd066edd04ac24c4643978e33</cites><orcidid>0000-0003-4288-3203 ; 0000-0001-6456-1710 ; 0000-0002-8406-4866 ; 0000-0003-4573-3809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961222005695$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36455487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Hongbao</creatorcontrib><creatorcontrib>Hu, Lianting</creatorcontrib><creatorcontrib>Chen, Qixin</creatorcontrib><creatorcontrib>Geng, Shanshan</creatorcontrib><creatorcontrib>Qiu, Kangqiang</creatorcontrib><creatorcontrib>Wang, Chengjun</creatorcontrib><creatorcontrib>Hao, Mingang</creatorcontrib><creatorcontrib>Tian, Zhiqi</creatorcontrib><creatorcontrib>Chen, Huimin</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Guan, Jun-Lin</creatorcontrib><creatorcontrib>Chen, Yuncong</creatorcontrib><creatorcontrib>Dong, Lei</creatorcontrib><creatorcontrib>Guo, Zijian</creatorcontrib><creatorcontrib>He, Weijiang</creatorcontrib><creatorcontrib>Diao, Jiajie</creatorcontrib><title>An ER-targeted “reserve-release” fluorogen for topological quantification of reticulophagy</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>The endoplasmic reticulum's (ER) dynamic nature, essential for maintaining cellular homeostasis, can be influenced by stress-induced damage, which can be assessed by examining the morphology of ER dynamics and, more locally, ER properties such as hydrophobicity, viscosity, and polarity. Although numerous ER-specific chemical probes have been developed to monitor the ER's physical and chemical parameters, the quantitative detection and super-resolution imaging of its local hydrophobicity have yet to be explored. Here, we describe a photostable ER-targeted probe with high signal-to-noise ratio for super-resolution imaging that can specifically respond to changes in ER hydrophobicity under stress based on a “reserve-release” mechanism. The probe shows an excellent ability to target ER over commercial ER dyes and can be used to track local changes of hydrophobicity by fluorescence intensity and morphology during the selective autophagy of ER (i.e., reticulophagy). By correlating the level and location of ER damage with the distribution of fluorescence intensity, we were able to assess reticulophagy at the subcellular level. Beyond that, we developed a topological analytical tool adaptable to any ER probe for detecting structural changes in ER and thus quantitatively identifying reticulophagy. The algorithm-assisted tool can also be adapted to a wide range of molecular probes and organelles. Altogether, the new probe and analytical strategy described here show promise for the quantitative detection and analysis of subtle ER damage and stress. [Display omitted] •We developed a “reserve-release” mechanism for ER-BDP, a photostable and low-toxicity probe for super-resolution imaging.•This ER-targeting lipophilic fluorescent probe is able to sense local hydrophobicity change caused by reticulophagy.•We provide new insights into the design of super-resolution imaging probes for quantifying the subcellular microenvironment.•A new topological parameter has been introduced for a wide range of molecular probes and organelles.</description><subject>Autophagy</subject><subject>biocompatible materials</subject><subject>Endoplasmic Reticulum</subject><subject>Endoplasmic Reticulum Stress</subject><subject>ER dynamics</subject><subject>fluorescence</subject><subject>homeostasis</subject><subject>hydrophobicity</subject><subject>Molecular probe</subject><subject>Reticulophagy</subject><subject>signal-to-noise ratio</subject><subject>Super-resolution imaging</subject><subject>Topological analysis</subject><subject>topology</subject><subject>viscosity</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctKxDAUhoMoOl5eQYorNx1za5q4E-8wIIhuDWl6OmboNGOSCu58EH05n8TKjOJON-cC3zn_4fwIHRA8JpiIo9m4cn5uEgRn2jimmNIxoURRtYZGRJYyLxQu1tEIE05zJQjdQtsxzvDQY0430RYTvCi4LEfo4aTLzm_zZMIUEtTZx-tbgAjhGfIALZgIH6_vWdP2PvgpdFnjQ5b8wrd-6qxps6fedMk1Q52c7zLfZAGSs33rF49m-rKLNprhRthb5R10f3F-d3qVT24ur09PJrnlhKVcVUZQJjlVooJSWWMaIZWqSgtUlZSwkipCBKlrLAQMkRtLueWCM1VKYGwHHS73LoJ_6iEmPXfRQtuaDnwfNSMFk0zKAv-J0pILpgiWakCPl6gNPsYAjV4ENzfhRROsv6zQM_3bCv1lhV5aMQzvr3T6ag71z-j37wfgbAnA8JhnB0FH66CzULsANunau__ofAIlYqNs</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Fang, Hongbao</creator><creator>Hu, Lianting</creator><creator>Chen, Qixin</creator><creator>Geng, Shanshan</creator><creator>Qiu, Kangqiang</creator><creator>Wang, Chengjun</creator><creator>Hao, Mingang</creator><creator>Tian, Zhiqi</creator><creator>Chen, Huimin</creator><creator>Liu, Lei</creator><creator>Guan, Jun-Lin</creator><creator>Chen, Yuncong</creator><creator>Dong, Lei</creator><creator>Guo, Zijian</creator><creator>He, Weijiang</creator><creator>Diao, Jiajie</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-4288-3203</orcidid><orcidid>https://orcid.org/0000-0001-6456-1710</orcidid><orcidid>https://orcid.org/0000-0002-8406-4866</orcidid><orcidid>https://orcid.org/0000-0003-4573-3809</orcidid></search><sort><creationdate>202301</creationdate><title>An ER-targeted “reserve-release” fluorogen for topological quantification of reticulophagy</title><author>Fang, Hongbao ; Hu, Lianting ; Chen, Qixin ; Geng, Shanshan ; Qiu, Kangqiang ; Wang, Chengjun ; Hao, Mingang ; Tian, Zhiqi ; Chen, Huimin ; Liu, Lei ; Guan, Jun-Lin ; Chen, Yuncong ; Dong, Lei ; Guo, Zijian ; He, Weijiang ; Diao, Jiajie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-9ba62384296be79caaf6899b7ce2972137291161dd066edd04ac24c4643978e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Autophagy</topic><topic>biocompatible materials</topic><topic>Endoplasmic Reticulum</topic><topic>Endoplasmic Reticulum Stress</topic><topic>ER dynamics</topic><topic>fluorescence</topic><topic>homeostasis</topic><topic>hydrophobicity</topic><topic>Molecular probe</topic><topic>Reticulophagy</topic><topic>signal-to-noise ratio</topic><topic>Super-resolution imaging</topic><topic>Topological analysis</topic><topic>topology</topic><topic>viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Hongbao</creatorcontrib><creatorcontrib>Hu, Lianting</creatorcontrib><creatorcontrib>Chen, Qixin</creatorcontrib><creatorcontrib>Geng, Shanshan</creatorcontrib><creatorcontrib>Qiu, Kangqiang</creatorcontrib><creatorcontrib>Wang, Chengjun</creatorcontrib><creatorcontrib>Hao, Mingang</creatorcontrib><creatorcontrib>Tian, Zhiqi</creatorcontrib><creatorcontrib>Chen, Huimin</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Guan, Jun-Lin</creatorcontrib><creatorcontrib>Chen, Yuncong</creatorcontrib><creatorcontrib>Dong, Lei</creatorcontrib><creatorcontrib>Guo, Zijian</creatorcontrib><creatorcontrib>He, Weijiang</creatorcontrib><creatorcontrib>Diao, Jiajie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Hongbao</au><au>Hu, Lianting</au><au>Chen, Qixin</au><au>Geng, Shanshan</au><au>Qiu, Kangqiang</au><au>Wang, Chengjun</au><au>Hao, Mingang</au><au>Tian, Zhiqi</au><au>Chen, Huimin</au><au>Liu, Lei</au><au>Guan, Jun-Lin</au><au>Chen, Yuncong</au><au>Dong, Lei</au><au>Guo, Zijian</au><au>He, Weijiang</au><au>Diao, Jiajie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ER-targeted “reserve-release” fluorogen for topological quantification of reticulophagy</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2023-01</date><risdate>2023</risdate><volume>292</volume><spage>121929</spage><epage>121929</epage><pages>121929-121929</pages><artnum>121929</artnum><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>The endoplasmic reticulum's (ER) dynamic nature, essential for maintaining cellular homeostasis, can be influenced by stress-induced damage, which can be assessed by examining the morphology of ER dynamics and, more locally, ER properties such as hydrophobicity, viscosity, and polarity. Although numerous ER-specific chemical probes have been developed to monitor the ER's physical and chemical parameters, the quantitative detection and super-resolution imaging of its local hydrophobicity have yet to be explored. Here, we describe a photostable ER-targeted probe with high signal-to-noise ratio for super-resolution imaging that can specifically respond to changes in ER hydrophobicity under stress based on a “reserve-release” mechanism. The probe shows an excellent ability to target ER over commercial ER dyes and can be used to track local changes of hydrophobicity by fluorescence intensity and morphology during the selective autophagy of ER (i.e., reticulophagy). By correlating the level and location of ER damage with the distribution of fluorescence intensity, we were able to assess reticulophagy at the subcellular level. Beyond that, we developed a topological analytical tool adaptable to any ER probe for detecting structural changes in ER and thus quantitatively identifying reticulophagy. The algorithm-assisted tool can also be adapted to a wide range of molecular probes and organelles. Altogether, the new probe and analytical strategy described here show promise for the quantitative detection and analysis of subtle ER damage and stress. [Display omitted] •We developed a “reserve-release” mechanism for ER-BDP, a photostable and low-toxicity probe for super-resolution imaging.•This ER-targeting lipophilic fluorescent probe is able to sense local hydrophobicity change caused by reticulophagy.•We provide new insights into the design of super-resolution imaging probes for quantifying the subcellular microenvironment.•A new topological parameter has been introduced for a wide range of molecular probes and organelles.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>36455487</pmid><doi>10.1016/j.biomaterials.2022.121929</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4288-3203</orcidid><orcidid>https://orcid.org/0000-0001-6456-1710</orcidid><orcidid>https://orcid.org/0000-0002-8406-4866</orcidid><orcidid>https://orcid.org/0000-0003-4573-3809</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2023-01, Vol.292, p.121929-121929, Article 121929
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_2746391089
source MEDLINE; Elsevier ScienceDirect Journals
subjects Autophagy
biocompatible materials
Endoplasmic Reticulum
Endoplasmic Reticulum Stress
ER dynamics
fluorescence
homeostasis
hydrophobicity
Molecular probe
Reticulophagy
signal-to-noise ratio
Super-resolution imaging
Topological analysis
topology
viscosity
title An ER-targeted “reserve-release” fluorogen for topological quantification of reticulophagy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A48%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ER-targeted%20%E2%80%9Creserve-release%E2%80%9D%20fluorogen%20for%20topological%20quantification%20of%20reticulophagy&rft.jtitle=Biomaterials&rft.au=Fang,%20Hongbao&rft.date=2023-01&rft.volume=292&rft.spage=121929&rft.epage=121929&rft.pages=121929-121929&rft.artnum=121929&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2022.121929&rft_dat=%3Cproquest_cross%3E2746391089%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2746391089&rft_id=info:pmid/36455487&rft_els_id=S0142961222005695&rfr_iscdi=true