An ER-targeted “reserve-release” fluorogen for topological quantification of reticulophagy
The endoplasmic reticulum's (ER) dynamic nature, essential for maintaining cellular homeostasis, can be influenced by stress-induced damage, which can be assessed by examining the morphology of ER dynamics and, more locally, ER properties such as hydrophobicity, viscosity, and polarity. Althoug...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2023-01, Vol.292, p.121929-121929, Article 121929 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 121929 |
---|---|
container_issue | |
container_start_page | 121929 |
container_title | Biomaterials |
container_volume | 292 |
creator | Fang, Hongbao Hu, Lianting Chen, Qixin Geng, Shanshan Qiu, Kangqiang Wang, Chengjun Hao, Mingang Tian, Zhiqi Chen, Huimin Liu, Lei Guan, Jun-Lin Chen, Yuncong Dong, Lei Guo, Zijian He, Weijiang Diao, Jiajie |
description | The endoplasmic reticulum's (ER) dynamic nature, essential for maintaining cellular homeostasis, can be influenced by stress-induced damage, which can be assessed by examining the morphology of ER dynamics and, more locally, ER properties such as hydrophobicity, viscosity, and polarity. Although numerous ER-specific chemical probes have been developed to monitor the ER's physical and chemical parameters, the quantitative detection and super-resolution imaging of its local hydrophobicity have yet to be explored. Here, we describe a photostable ER-targeted probe with high signal-to-noise ratio for super-resolution imaging that can specifically respond to changes in ER hydrophobicity under stress based on a “reserve-release” mechanism. The probe shows an excellent ability to target ER over commercial ER dyes and can be used to track local changes of hydrophobicity by fluorescence intensity and morphology during the selective autophagy of ER (i.e., reticulophagy). By correlating the level and location of ER damage with the distribution of fluorescence intensity, we were able to assess reticulophagy at the subcellular level. Beyond that, we developed a topological analytical tool adaptable to any ER probe for detecting structural changes in ER and thus quantitatively identifying reticulophagy. The algorithm-assisted tool can also be adapted to a wide range of molecular probes and organelles. Altogether, the new probe and analytical strategy described here show promise for the quantitative detection and analysis of subtle ER damage and stress.
[Display omitted]
•We developed a “reserve-release” mechanism for ER-BDP, a photostable and low-toxicity probe for super-resolution imaging.•This ER-targeting lipophilic fluorescent probe is able to sense local hydrophobicity change caused by reticulophagy.•We provide new insights into the design of super-resolution imaging probes for quantifying the subcellular microenvironment.•A new topological parameter has been introduced for a wide range of molecular probes and organelles. |
doi_str_mv | 10.1016/j.biomaterials.2022.121929 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2746391089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961222005695</els_id><sourcerecordid>2746391089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-9ba62384296be79caaf6899b7ce2972137291161dd066edd04ac24c4643978e33</originalsourceid><addsrcrecordid>eNqNkctKxDAUhoMoOl5eQYorNx1za5q4E-8wIIhuDWl6OmboNGOSCu58EH05n8TKjOJON-cC3zn_4fwIHRA8JpiIo9m4cn5uEgRn2jimmNIxoURRtYZGRJYyLxQu1tEIE05zJQjdQtsxzvDQY0430RYTvCi4LEfo4aTLzm_zZMIUEtTZx-tbgAjhGfIALZgIH6_vWdP2PvgpdFnjQ5b8wrd-6qxps6fedMk1Q52c7zLfZAGSs33rF49m-rKLNprhRthb5R10f3F-d3qVT24ur09PJrnlhKVcVUZQJjlVooJSWWMaIZWqSgtUlZSwkipCBKlrLAQMkRtLueWCM1VKYGwHHS73LoJ_6iEmPXfRQtuaDnwfNSMFk0zKAv-J0pILpgiWakCPl6gNPsYAjV4ENzfhRROsv6zQM_3bCv1lhV5aMQzvr3T6ag71z-j37wfgbAnA8JhnB0FH66CzULsANunau__ofAIlYqNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2746391089</pqid></control><display><type>article</type><title>An ER-targeted “reserve-release” fluorogen for topological quantification of reticulophagy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Fang, Hongbao ; Hu, Lianting ; Chen, Qixin ; Geng, Shanshan ; Qiu, Kangqiang ; Wang, Chengjun ; Hao, Mingang ; Tian, Zhiqi ; Chen, Huimin ; Liu, Lei ; Guan, Jun-Lin ; Chen, Yuncong ; Dong, Lei ; Guo, Zijian ; He, Weijiang ; Diao, Jiajie</creator><creatorcontrib>Fang, Hongbao ; Hu, Lianting ; Chen, Qixin ; Geng, Shanshan ; Qiu, Kangqiang ; Wang, Chengjun ; Hao, Mingang ; Tian, Zhiqi ; Chen, Huimin ; Liu, Lei ; Guan, Jun-Lin ; Chen, Yuncong ; Dong, Lei ; Guo, Zijian ; He, Weijiang ; Diao, Jiajie</creatorcontrib><description>The endoplasmic reticulum's (ER) dynamic nature, essential for maintaining cellular homeostasis, can be influenced by stress-induced damage, which can be assessed by examining the morphology of ER dynamics and, more locally, ER properties such as hydrophobicity, viscosity, and polarity. Although numerous ER-specific chemical probes have been developed to monitor the ER's physical and chemical parameters, the quantitative detection and super-resolution imaging of its local hydrophobicity have yet to be explored. Here, we describe a photostable ER-targeted probe with high signal-to-noise ratio for super-resolution imaging that can specifically respond to changes in ER hydrophobicity under stress based on a “reserve-release” mechanism. The probe shows an excellent ability to target ER over commercial ER dyes and can be used to track local changes of hydrophobicity by fluorescence intensity and morphology during the selective autophagy of ER (i.e., reticulophagy). By correlating the level and location of ER damage with the distribution of fluorescence intensity, we were able to assess reticulophagy at the subcellular level. Beyond that, we developed a topological analytical tool adaptable to any ER probe for detecting structural changes in ER and thus quantitatively identifying reticulophagy. The algorithm-assisted tool can also be adapted to a wide range of molecular probes and organelles. Altogether, the new probe and analytical strategy described here show promise for the quantitative detection and analysis of subtle ER damage and stress.
[Display omitted]
•We developed a “reserve-release” mechanism for ER-BDP, a photostable and low-toxicity probe for super-resolution imaging.•This ER-targeting lipophilic fluorescent probe is able to sense local hydrophobicity change caused by reticulophagy.•We provide new insights into the design of super-resolution imaging probes for quantifying the subcellular microenvironment.•A new topological parameter has been introduced for a wide range of molecular probes and organelles.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2022.121929</identifier><identifier>PMID: 36455487</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Autophagy ; biocompatible materials ; Endoplasmic Reticulum ; Endoplasmic Reticulum Stress ; ER dynamics ; fluorescence ; homeostasis ; hydrophobicity ; Molecular probe ; Reticulophagy ; signal-to-noise ratio ; Super-resolution imaging ; Topological analysis ; topology ; viscosity</subject><ispartof>Biomaterials, 2023-01, Vol.292, p.121929-121929, Article 121929</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-9ba62384296be79caaf6899b7ce2972137291161dd066edd04ac24c4643978e33</citedby><cites>FETCH-LOGICAL-c413t-9ba62384296be79caaf6899b7ce2972137291161dd066edd04ac24c4643978e33</cites><orcidid>0000-0003-4288-3203 ; 0000-0001-6456-1710 ; 0000-0002-8406-4866 ; 0000-0003-4573-3809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961222005695$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36455487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Hongbao</creatorcontrib><creatorcontrib>Hu, Lianting</creatorcontrib><creatorcontrib>Chen, Qixin</creatorcontrib><creatorcontrib>Geng, Shanshan</creatorcontrib><creatorcontrib>Qiu, Kangqiang</creatorcontrib><creatorcontrib>Wang, Chengjun</creatorcontrib><creatorcontrib>Hao, Mingang</creatorcontrib><creatorcontrib>Tian, Zhiqi</creatorcontrib><creatorcontrib>Chen, Huimin</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Guan, Jun-Lin</creatorcontrib><creatorcontrib>Chen, Yuncong</creatorcontrib><creatorcontrib>Dong, Lei</creatorcontrib><creatorcontrib>Guo, Zijian</creatorcontrib><creatorcontrib>He, Weijiang</creatorcontrib><creatorcontrib>Diao, Jiajie</creatorcontrib><title>An ER-targeted “reserve-release” fluorogen for topological quantification of reticulophagy</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>The endoplasmic reticulum's (ER) dynamic nature, essential for maintaining cellular homeostasis, can be influenced by stress-induced damage, which can be assessed by examining the morphology of ER dynamics and, more locally, ER properties such as hydrophobicity, viscosity, and polarity. Although numerous ER-specific chemical probes have been developed to monitor the ER's physical and chemical parameters, the quantitative detection and super-resolution imaging of its local hydrophobicity have yet to be explored. Here, we describe a photostable ER-targeted probe with high signal-to-noise ratio for super-resolution imaging that can specifically respond to changes in ER hydrophobicity under stress based on a “reserve-release” mechanism. The probe shows an excellent ability to target ER over commercial ER dyes and can be used to track local changes of hydrophobicity by fluorescence intensity and morphology during the selective autophagy of ER (i.e., reticulophagy). By correlating the level and location of ER damage with the distribution of fluorescence intensity, we were able to assess reticulophagy at the subcellular level. Beyond that, we developed a topological analytical tool adaptable to any ER probe for detecting structural changes in ER and thus quantitatively identifying reticulophagy. The algorithm-assisted tool can also be adapted to a wide range of molecular probes and organelles. Altogether, the new probe and analytical strategy described here show promise for the quantitative detection and analysis of subtle ER damage and stress.
[Display omitted]
•We developed a “reserve-release” mechanism for ER-BDP, a photostable and low-toxicity probe for super-resolution imaging.•This ER-targeting lipophilic fluorescent probe is able to sense local hydrophobicity change caused by reticulophagy.•We provide new insights into the design of super-resolution imaging probes for quantifying the subcellular microenvironment.•A new topological parameter has been introduced for a wide range of molecular probes and organelles.</description><subject>Autophagy</subject><subject>biocompatible materials</subject><subject>Endoplasmic Reticulum</subject><subject>Endoplasmic Reticulum Stress</subject><subject>ER dynamics</subject><subject>fluorescence</subject><subject>homeostasis</subject><subject>hydrophobicity</subject><subject>Molecular probe</subject><subject>Reticulophagy</subject><subject>signal-to-noise ratio</subject><subject>Super-resolution imaging</subject><subject>Topological analysis</subject><subject>topology</subject><subject>viscosity</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctKxDAUhoMoOl5eQYorNx1za5q4E-8wIIhuDWl6OmboNGOSCu58EH05n8TKjOJON-cC3zn_4fwIHRA8JpiIo9m4cn5uEgRn2jimmNIxoURRtYZGRJYyLxQu1tEIE05zJQjdQtsxzvDQY0430RYTvCi4LEfo4aTLzm_zZMIUEtTZx-tbgAjhGfIALZgIH6_vWdP2PvgpdFnjQ5b8wrd-6qxps6fedMk1Q52c7zLfZAGSs33rF49m-rKLNprhRthb5R10f3F-d3qVT24ur09PJrnlhKVcVUZQJjlVooJSWWMaIZWqSgtUlZSwkipCBKlrLAQMkRtLueWCM1VKYGwHHS73LoJ_6iEmPXfRQtuaDnwfNSMFk0zKAv-J0pILpgiWakCPl6gNPsYAjV4ENzfhRROsv6zQM_3bCv1lhV5aMQzvr3T6ag71z-j37wfgbAnA8JhnB0FH66CzULsANunau__ofAIlYqNs</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Fang, Hongbao</creator><creator>Hu, Lianting</creator><creator>Chen, Qixin</creator><creator>Geng, Shanshan</creator><creator>Qiu, Kangqiang</creator><creator>Wang, Chengjun</creator><creator>Hao, Mingang</creator><creator>Tian, Zhiqi</creator><creator>Chen, Huimin</creator><creator>Liu, Lei</creator><creator>Guan, Jun-Lin</creator><creator>Chen, Yuncong</creator><creator>Dong, Lei</creator><creator>Guo, Zijian</creator><creator>He, Weijiang</creator><creator>Diao, Jiajie</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-4288-3203</orcidid><orcidid>https://orcid.org/0000-0001-6456-1710</orcidid><orcidid>https://orcid.org/0000-0002-8406-4866</orcidid><orcidid>https://orcid.org/0000-0003-4573-3809</orcidid></search><sort><creationdate>202301</creationdate><title>An ER-targeted “reserve-release” fluorogen for topological quantification of reticulophagy</title><author>Fang, Hongbao ; Hu, Lianting ; Chen, Qixin ; Geng, Shanshan ; Qiu, Kangqiang ; Wang, Chengjun ; Hao, Mingang ; Tian, Zhiqi ; Chen, Huimin ; Liu, Lei ; Guan, Jun-Lin ; Chen, Yuncong ; Dong, Lei ; Guo, Zijian ; He, Weijiang ; Diao, Jiajie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-9ba62384296be79caaf6899b7ce2972137291161dd066edd04ac24c4643978e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Autophagy</topic><topic>biocompatible materials</topic><topic>Endoplasmic Reticulum</topic><topic>Endoplasmic Reticulum Stress</topic><topic>ER dynamics</topic><topic>fluorescence</topic><topic>homeostasis</topic><topic>hydrophobicity</topic><topic>Molecular probe</topic><topic>Reticulophagy</topic><topic>signal-to-noise ratio</topic><topic>Super-resolution imaging</topic><topic>Topological analysis</topic><topic>topology</topic><topic>viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Hongbao</creatorcontrib><creatorcontrib>Hu, Lianting</creatorcontrib><creatorcontrib>Chen, Qixin</creatorcontrib><creatorcontrib>Geng, Shanshan</creatorcontrib><creatorcontrib>Qiu, Kangqiang</creatorcontrib><creatorcontrib>Wang, Chengjun</creatorcontrib><creatorcontrib>Hao, Mingang</creatorcontrib><creatorcontrib>Tian, Zhiqi</creatorcontrib><creatorcontrib>Chen, Huimin</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Guan, Jun-Lin</creatorcontrib><creatorcontrib>Chen, Yuncong</creatorcontrib><creatorcontrib>Dong, Lei</creatorcontrib><creatorcontrib>Guo, Zijian</creatorcontrib><creatorcontrib>He, Weijiang</creatorcontrib><creatorcontrib>Diao, Jiajie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Hongbao</au><au>Hu, Lianting</au><au>Chen, Qixin</au><au>Geng, Shanshan</au><au>Qiu, Kangqiang</au><au>Wang, Chengjun</au><au>Hao, Mingang</au><au>Tian, Zhiqi</au><au>Chen, Huimin</au><au>Liu, Lei</au><au>Guan, Jun-Lin</au><au>Chen, Yuncong</au><au>Dong, Lei</au><au>Guo, Zijian</au><au>He, Weijiang</au><au>Diao, Jiajie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ER-targeted “reserve-release” fluorogen for topological quantification of reticulophagy</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2023-01</date><risdate>2023</risdate><volume>292</volume><spage>121929</spage><epage>121929</epage><pages>121929-121929</pages><artnum>121929</artnum><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>The endoplasmic reticulum's (ER) dynamic nature, essential for maintaining cellular homeostasis, can be influenced by stress-induced damage, which can be assessed by examining the morphology of ER dynamics and, more locally, ER properties such as hydrophobicity, viscosity, and polarity. Although numerous ER-specific chemical probes have been developed to monitor the ER's physical and chemical parameters, the quantitative detection and super-resolution imaging of its local hydrophobicity have yet to be explored. Here, we describe a photostable ER-targeted probe with high signal-to-noise ratio for super-resolution imaging that can specifically respond to changes in ER hydrophobicity under stress based on a “reserve-release” mechanism. The probe shows an excellent ability to target ER over commercial ER dyes and can be used to track local changes of hydrophobicity by fluorescence intensity and morphology during the selective autophagy of ER (i.e., reticulophagy). By correlating the level and location of ER damage with the distribution of fluorescence intensity, we were able to assess reticulophagy at the subcellular level. Beyond that, we developed a topological analytical tool adaptable to any ER probe for detecting structural changes in ER and thus quantitatively identifying reticulophagy. The algorithm-assisted tool can also be adapted to a wide range of molecular probes and organelles. Altogether, the new probe and analytical strategy described here show promise for the quantitative detection and analysis of subtle ER damage and stress.
[Display omitted]
•We developed a “reserve-release” mechanism for ER-BDP, a photostable and low-toxicity probe for super-resolution imaging.•This ER-targeting lipophilic fluorescent probe is able to sense local hydrophobicity change caused by reticulophagy.•We provide new insights into the design of super-resolution imaging probes for quantifying the subcellular microenvironment.•A new topological parameter has been introduced for a wide range of molecular probes and organelles.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>36455487</pmid><doi>10.1016/j.biomaterials.2022.121929</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4288-3203</orcidid><orcidid>https://orcid.org/0000-0001-6456-1710</orcidid><orcidid>https://orcid.org/0000-0002-8406-4866</orcidid><orcidid>https://orcid.org/0000-0003-4573-3809</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2023-01, Vol.292, p.121929-121929, Article 121929 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_2746391089 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Autophagy biocompatible materials Endoplasmic Reticulum Endoplasmic Reticulum Stress ER dynamics fluorescence homeostasis hydrophobicity Molecular probe Reticulophagy signal-to-noise ratio Super-resolution imaging Topological analysis topology viscosity |
title | An ER-targeted “reserve-release” fluorogen for topological quantification of reticulophagy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A48%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ER-targeted%20%E2%80%9Creserve-release%E2%80%9D%20fluorogen%20for%20topological%20quantification%20of%20reticulophagy&rft.jtitle=Biomaterials&rft.au=Fang,%20Hongbao&rft.date=2023-01&rft.volume=292&rft.spage=121929&rft.epage=121929&rft.pages=121929-121929&rft.artnum=121929&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2022.121929&rft_dat=%3Cproquest_cross%3E2746391089%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2746391089&rft_id=info:pmid/36455487&rft_els_id=S0142961222005695&rfr_iscdi=true |