Ancient Darwinian replicators nested within eubacterial genomes

Integrative mobile genetic elements (MGEs), such as transposons and insertion sequences, propagate within bacterial genomes, but persistence times in individual lineages are short. For long‐term survival, MGEs must continuously invade new hosts by horizontal transfer. Theoretically, MGEs that persis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioEssays 2023-02, Vol.45 (2), p.e2200085-n/a
Hauptverfasser: Bertels, Frederic, Rainey, Paul B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e2200085
container_title BioEssays
container_volume 45
creator Bertels, Frederic
Rainey, Paul B.
description Integrative mobile genetic elements (MGEs), such as transposons and insertion sequences, propagate within bacterial genomes, but persistence times in individual lineages are short. For long‐term survival, MGEs must continuously invade new hosts by horizontal transfer. Theoretically, MGEs that persist for millions of years in single lineages, and are thus subject to vertical inheritance, should not exist. Here we draw attention to an exception – a class of MGE termed REPIN. REPINs are non‐autonomous MGEs whose duplication depends on non‐jumping RAYT transposases. Comparisons of REPINs and typical MGEs show that replication rates of REPINs are orders of magnitude lower, REPIN population size fluctuations correlate with changes in available genome space, REPIN conservation depends on RAYT function, and REPIN diversity accumulates within host lineages. These data lead to the hypothesis that REPINs form enduring, beneficial associations with eubacterial chromosomes. Given replicative nesting, our hypothesis predicts conflicts arising from the diverging effects of selection acting simultaneously on REPINs and host genomes. Evidence in support comes from patterns of REPIN abundance and diversity in two distantly related bacterial species. Together this bolsters the conclusion that REPINs are the genetic counterpart of mutualistic endosymbiotic bacteria. REPINs are mobile genetic elements that have evolved from the terminal repeats of a parasitic transposon and replicate by virtue of interaction with RAYTs. Uniquely, the REPIN‐RAYT system is widespread among eubacteria, has persisted for millions of years, is vertically transmitted – therefore beneficial to hosts – and reminiscent of mutualistic endosymbionts.
doi_str_mv 10.1002/bies.202200085
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2746389751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2746389751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3645-e34cfbb0b4801a0e70b833f91d5cdd5d8494255a2096f42d86878a83e5633f153</originalsourceid><addsrcrecordid>eNqF0MFPwyAYBXBiNG5Orx5NEy9eOoEChZOZc-qSJR7Uc0Pbr8rS0gltlv33smzOxIsnLj8ej4fQJcFjgjG9zQ34McWUYowlP0JDwimJiUzlMRpiKnisKEsH6Mz7ZSBKUHaKBolgXDChhuhuYgsDtosetFsba7SNHKxqU-iudT6y4Dsoo7XpPo2NoM910YEzuo4-wLYN-HN0Uunaw8X-HKH3x9nb9DlevDzNp5NFXGzfiiFhRZXnOGcSE40hxblMkkqRkhdlyUvJFKOcaxoaVoyWUoQfaJkAF4ERnozQzS535dqvPrTKGuMLqGttoe19RlMmEqlSTgK9_kOXbe9saBeUEAkRHKugxjtVuNZ7B1W2cqbRbpMRnG2nzbbTZodpw4WrfWyfN1Ae-M-WAagdWJsaNv_EZffz2etv-Dcz1oPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766316509</pqid></control><display><type>article</type><title>Ancient Darwinian replicators nested within eubacterial genomes</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bertels, Frederic ; Rainey, Paul B.</creator><creatorcontrib>Bertels, Frederic ; Rainey, Paul B.</creatorcontrib><description>Integrative mobile genetic elements (MGEs), such as transposons and insertion sequences, propagate within bacterial genomes, but persistence times in individual lineages are short. For long‐term survival, MGEs must continuously invade new hosts by horizontal transfer. Theoretically, MGEs that persist for millions of years in single lineages, and are thus subject to vertical inheritance, should not exist. Here we draw attention to an exception – a class of MGE termed REPIN. REPINs are non‐autonomous MGEs whose duplication depends on non‐jumping RAYT transposases. Comparisons of REPINs and typical MGEs show that replication rates of REPINs are orders of magnitude lower, REPIN population size fluctuations correlate with changes in available genome space, REPIN conservation depends on RAYT function, and REPIN diversity accumulates within host lineages. These data lead to the hypothesis that REPINs form enduring, beneficial associations with eubacterial chromosomes. Given replicative nesting, our hypothesis predicts conflicts arising from the diverging effects of selection acting simultaneously on REPINs and host genomes. Evidence in support comes from patterns of REPIN abundance and diversity in two distantly related bacterial species. Together this bolsters the conclusion that REPINs are the genetic counterpart of mutualistic endosymbiotic bacteria. REPINs are mobile genetic elements that have evolved from the terminal repeats of a parasitic transposon and replicate by virtue of interaction with RAYTs. Uniquely, the REPIN‐RAYT system is widespread among eubacteria, has persisted for millions of years, is vertically transmitted – therefore beneficial to hosts – and reminiscent of mutualistic endosymbionts.</description><identifier>ISSN: 0265-9247</identifier><identifier>EISSN: 1521-1878</identifier><identifier>DOI: 10.1002/bies.202200085</identifier><identifier>PMID: 36456469</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Bacteria ; Bacteria - genetics ; Chromosomes ; DNA Transposable Elements - genetics ; endosymbiosis ; Genome, Bacterial - genetics ; Genomes ; Horizontal transfer ; Hypotheses ; Insertion sequences ; interactions ; Interspersed Repetitive Sequences ; levels of selection ; Nesting ; population biology ; Population number ; Transposons</subject><ispartof>BioEssays, 2023-02, Vol.45 (2), p.e2200085-n/a</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC.</rights><rights>2022 The Authors. BioEssays published by Wiley Periodicals LLC.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3645-e34cfbb0b4801a0e70b833f91d5cdd5d8494255a2096f42d86878a83e5633f153</citedby><cites>FETCH-LOGICAL-c3645-e34cfbb0b4801a0e70b833f91d5cdd5d8494255a2096f42d86878a83e5633f153</cites><orcidid>0000-0001-6222-4139 ; 0000-0003-0879-5795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbies.202200085$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbies.202200085$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45552,45553</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36456469$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bertels, Frederic</creatorcontrib><creatorcontrib>Rainey, Paul B.</creatorcontrib><title>Ancient Darwinian replicators nested within eubacterial genomes</title><title>BioEssays</title><addtitle>Bioessays</addtitle><description>Integrative mobile genetic elements (MGEs), such as transposons and insertion sequences, propagate within bacterial genomes, but persistence times in individual lineages are short. For long‐term survival, MGEs must continuously invade new hosts by horizontal transfer. Theoretically, MGEs that persist for millions of years in single lineages, and are thus subject to vertical inheritance, should not exist. Here we draw attention to an exception – a class of MGE termed REPIN. REPINs are non‐autonomous MGEs whose duplication depends on non‐jumping RAYT transposases. Comparisons of REPINs and typical MGEs show that replication rates of REPINs are orders of magnitude lower, REPIN population size fluctuations correlate with changes in available genome space, REPIN conservation depends on RAYT function, and REPIN diversity accumulates within host lineages. These data lead to the hypothesis that REPINs form enduring, beneficial associations with eubacterial chromosomes. Given replicative nesting, our hypothesis predicts conflicts arising from the diverging effects of selection acting simultaneously on REPINs and host genomes. Evidence in support comes from patterns of REPIN abundance and diversity in two distantly related bacterial species. Together this bolsters the conclusion that REPINs are the genetic counterpart of mutualistic endosymbiotic bacteria. REPINs are mobile genetic elements that have evolved from the terminal repeats of a parasitic transposon and replicate by virtue of interaction with RAYTs. Uniquely, the REPIN‐RAYT system is widespread among eubacteria, has persisted for millions of years, is vertically transmitted – therefore beneficial to hosts – and reminiscent of mutualistic endosymbionts.</description><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Chromosomes</subject><subject>DNA Transposable Elements - genetics</subject><subject>endosymbiosis</subject><subject>Genome, Bacterial - genetics</subject><subject>Genomes</subject><subject>Horizontal transfer</subject><subject>Hypotheses</subject><subject>Insertion sequences</subject><subject>interactions</subject><subject>Interspersed Repetitive Sequences</subject><subject>levels of selection</subject><subject>Nesting</subject><subject>population biology</subject><subject>Population number</subject><subject>Transposons</subject><issn>0265-9247</issn><issn>1521-1878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqF0MFPwyAYBXBiNG5Orx5NEy9eOoEChZOZc-qSJR7Uc0Pbr8rS0gltlv33smzOxIsnLj8ej4fQJcFjgjG9zQ34McWUYowlP0JDwimJiUzlMRpiKnisKEsH6Mz7ZSBKUHaKBolgXDChhuhuYgsDtosetFsba7SNHKxqU-iudT6y4Dsoo7XpPo2NoM910YEzuo4-wLYN-HN0Uunaw8X-HKH3x9nb9DlevDzNp5NFXGzfiiFhRZXnOGcSE40hxblMkkqRkhdlyUvJFKOcaxoaVoyWUoQfaJkAF4ERnozQzS535dqvPrTKGuMLqGttoe19RlMmEqlSTgK9_kOXbe9saBeUEAkRHKugxjtVuNZ7B1W2cqbRbpMRnG2nzbbTZodpw4WrfWyfN1Ae-M-WAagdWJsaNv_EZffz2etv-Dcz1oPw</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Bertels, Frederic</creator><creator>Rainey, Paul B.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6222-4139</orcidid><orcidid>https://orcid.org/0000-0003-0879-5795</orcidid></search><sort><creationdate>202302</creationdate><title>Ancient Darwinian replicators nested within eubacterial genomes</title><author>Bertels, Frederic ; Rainey, Paul B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3645-e34cfbb0b4801a0e70b833f91d5cdd5d8494255a2096f42d86878a83e5633f153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Chromosomes</topic><topic>DNA Transposable Elements - genetics</topic><topic>endosymbiosis</topic><topic>Genome, Bacterial - genetics</topic><topic>Genomes</topic><topic>Horizontal transfer</topic><topic>Hypotheses</topic><topic>Insertion sequences</topic><topic>interactions</topic><topic>Interspersed Repetitive Sequences</topic><topic>levels of selection</topic><topic>Nesting</topic><topic>population biology</topic><topic>Population number</topic><topic>Transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bertels, Frederic</creatorcontrib><creatorcontrib>Rainey, Paul B.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>BioEssays</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bertels, Frederic</au><au>Rainey, Paul B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ancient Darwinian replicators nested within eubacterial genomes</atitle><jtitle>BioEssays</jtitle><addtitle>Bioessays</addtitle><date>2023-02</date><risdate>2023</risdate><volume>45</volume><issue>2</issue><spage>e2200085</spage><epage>n/a</epage><pages>e2200085-n/a</pages><issn>0265-9247</issn><eissn>1521-1878</eissn><abstract>Integrative mobile genetic elements (MGEs), such as transposons and insertion sequences, propagate within bacterial genomes, but persistence times in individual lineages are short. For long‐term survival, MGEs must continuously invade new hosts by horizontal transfer. Theoretically, MGEs that persist for millions of years in single lineages, and are thus subject to vertical inheritance, should not exist. Here we draw attention to an exception – a class of MGE termed REPIN. REPINs are non‐autonomous MGEs whose duplication depends on non‐jumping RAYT transposases. Comparisons of REPINs and typical MGEs show that replication rates of REPINs are orders of magnitude lower, REPIN population size fluctuations correlate with changes in available genome space, REPIN conservation depends on RAYT function, and REPIN diversity accumulates within host lineages. These data lead to the hypothesis that REPINs form enduring, beneficial associations with eubacterial chromosomes. Given replicative nesting, our hypothesis predicts conflicts arising from the diverging effects of selection acting simultaneously on REPINs and host genomes. Evidence in support comes from patterns of REPIN abundance and diversity in two distantly related bacterial species. Together this bolsters the conclusion that REPINs are the genetic counterpart of mutualistic endosymbiotic bacteria. REPINs are mobile genetic elements that have evolved from the terminal repeats of a parasitic transposon and replicate by virtue of interaction with RAYTs. Uniquely, the REPIN‐RAYT system is widespread among eubacteria, has persisted for millions of years, is vertically transmitted – therefore beneficial to hosts – and reminiscent of mutualistic endosymbionts.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36456469</pmid><doi>10.1002/bies.202200085</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6222-4139</orcidid><orcidid>https://orcid.org/0000-0003-0879-5795</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0265-9247
ispartof BioEssays, 2023-02, Vol.45 (2), p.e2200085-n/a
issn 0265-9247
1521-1878
language eng
recordid cdi_proquest_miscellaneous_2746389751
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Bacteria
Bacteria - genetics
Chromosomes
DNA Transposable Elements - genetics
endosymbiosis
Genome, Bacterial - genetics
Genomes
Horizontal transfer
Hypotheses
Insertion sequences
interactions
Interspersed Repetitive Sequences
levels of selection
Nesting
population biology
Population number
Transposons
title Ancient Darwinian replicators nested within eubacterial genomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A36%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ancient%20Darwinian%20replicators%20nested%20within%20eubacterial%20genomes&rft.jtitle=BioEssays&rft.au=Bertels,%20Frederic&rft.date=2023-02&rft.volume=45&rft.issue=2&rft.spage=e2200085&rft.epage=n/a&rft.pages=e2200085-n/a&rft.issn=0265-9247&rft.eissn=1521-1878&rft_id=info:doi/10.1002/bies.202200085&rft_dat=%3Cproquest_cross%3E2746389751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766316509&rft_id=info:pmid/36456469&rfr_iscdi=true