Additive hazards model with time-varying coefficients and imaging predictors

Conventional hazard regression analyses frequently assume constant regression coefficients and scalar covariates. However, some covariate effects may vary with time. Moreover, medical imaging has become an increasingly important tool in screening, diagnosis, and prognosis of various diseases, given...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methods in medical research 2023-02, Vol.32 (2), p.353-372
Hauptverfasser: Yang, Qi, Wang, Chuchu, He, Haijin, Zhou, Xiaoxiao, Song, Xinyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 372
container_issue 2
container_start_page 353
container_title Statistical methods in medical research
container_volume 32
creator Yang, Qi
Wang, Chuchu
He, Haijin
Zhou, Xiaoxiao
Song, Xinyuan
description Conventional hazard regression analyses frequently assume constant regression coefficients and scalar covariates. However, some covariate effects may vary with time. Moreover, medical imaging has become an increasingly important tool in screening, diagnosis, and prognosis of various diseases, given its information visualization and quantitative assessment. This study considers an additive hazards model with time-varying coefficients and imaging predictors to examine the dynamic effects of potential scalar and imaging risk factors for the failure of interest. We develop a two-stage approach that comprises the high-dimensional functional principal component analysis technique in the first stage and the counting process-based estimating equation approach in the second stage. In addition, we construct the pointwise confidence intervals for the proposed estimators and provide a significance test for the effects of scalar and imaging covariates. Simulation studies demonstrate the satisfactory performance of the proposed method. An application to the Alzheimer’s disease neuroimaging initiative study further illustrates the utility of the methodology.
doi_str_mv 10.1177/09622802221137746
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2744669969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09622802221137746</sage_id><sourcerecordid>2744669969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-4d6a4f38a5b6cb4c8c9216757355a753fe7ef909179fa0201d72d155129335bc3</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRbK3-ADcScOMmdd6TWZbiCwpudB0m82in5FFnkkr99Sa0Kiiu7uJ859x7DwCXCE4REuIWSo5xBjHGCBEhKD8CY0SFSCEh9BiMBz0dgBE4i3ENIRSQylMwIpwyxDEag8XMGN_6rU1W6kMFE5OqMbZM3n27Slpf2XSrws7Xy0Q31jmvva3bmKjaJL5Sy0HYBGu8bpsQz8GJU2W0F4c5Aa_3dy_zx3Tx_PA0ny1STTBsU2q4oo5kihVcF1RnWmLEBROEMSUYcVZYJ6FEQjoFMURGYIMYQ1gSwgpNJuBmn7sJzVtnY5tXPmpblqq2TRdzLCjlXEoue_T6F7puulD31_WUQARjmWU9hfaUDk2Mwbp8E_r3wi5HMB-qzv9U3XuuDsldUVnz7fjqtgemeyCqpf1Z-3_iJ0sNhIc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771322988</pqid></control><display><type>article</type><title>Additive hazards model with time-varying coefficients and imaging predictors</title><source>Access via SAGE</source><source>MEDLINE</source><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><creator>Yang, Qi ; Wang, Chuchu ; He, Haijin ; Zhou, Xiaoxiao ; Song, Xinyuan</creator><creatorcontrib>Yang, Qi ; Wang, Chuchu ; He, Haijin ; Zhou, Xiaoxiao ; Song, Xinyuan</creatorcontrib><description>Conventional hazard regression analyses frequently assume constant regression coefficients and scalar covariates. However, some covariate effects may vary with time. Moreover, medical imaging has become an increasingly important tool in screening, diagnosis, and prognosis of various diseases, given its information visualization and quantitative assessment. This study considers an additive hazards model with time-varying coefficients and imaging predictors to examine the dynamic effects of potential scalar and imaging risk factors for the failure of interest. We develop a two-stage approach that comprises the high-dimensional functional principal component analysis technique in the first stage and the counting process-based estimating equation approach in the second stage. In addition, we construct the pointwise confidence intervals for the proposed estimators and provide a significance test for the effects of scalar and imaging covariates. Simulation studies demonstrate the satisfactory performance of the proposed method. An application to the Alzheimer’s disease neuroimaging initiative study further illustrates the utility of the methodology.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/09622802221137746</identifier><identifier>PMID: 36451621</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Additives ; Alzheimer's disease ; Computer Simulation ; Confidence intervals ; Counting ; Dimensional analysis ; Hazard assessment ; Mathematical models ; Medical diagnosis ; Medical imaging ; Medical prognosis ; Medical screening ; Models, Statistical ; Neuroimaging ; Principal components analysis ; Proportional Hazards Models ; Regression Analysis ; Regression coefficients ; Risk analysis ; Risk factors ; Scientific visualization ; Simulation ; Statistical analysis ; Visualization</subject><ispartof>Statistical methods in medical research, 2023-02, Vol.32 (2), p.353-372</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-4d6a4f38a5b6cb4c8c9216757355a753fe7ef909179fa0201d72d155129335bc3</cites><orcidid>0000-0002-4877-3200</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09622802221137746$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09622802221137746$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>315,781,785,21824,27929,27930,31004,43626,43627</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36451621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Wang, Chuchu</creatorcontrib><creatorcontrib>He, Haijin</creatorcontrib><creatorcontrib>Zhou, Xiaoxiao</creatorcontrib><creatorcontrib>Song, Xinyuan</creatorcontrib><title>Additive hazards model with time-varying coefficients and imaging predictors</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>Conventional hazard regression analyses frequently assume constant regression coefficients and scalar covariates. However, some covariate effects may vary with time. Moreover, medical imaging has become an increasingly important tool in screening, diagnosis, and prognosis of various diseases, given its information visualization and quantitative assessment. This study considers an additive hazards model with time-varying coefficients and imaging predictors to examine the dynamic effects of potential scalar and imaging risk factors for the failure of interest. We develop a two-stage approach that comprises the high-dimensional functional principal component analysis technique in the first stage and the counting process-based estimating equation approach in the second stage. In addition, we construct the pointwise confidence intervals for the proposed estimators and provide a significance test for the effects of scalar and imaging covariates. Simulation studies demonstrate the satisfactory performance of the proposed method. An application to the Alzheimer’s disease neuroimaging initiative study further illustrates the utility of the methodology.</description><subject>Additives</subject><subject>Alzheimer's disease</subject><subject>Computer Simulation</subject><subject>Confidence intervals</subject><subject>Counting</subject><subject>Dimensional analysis</subject><subject>Hazard assessment</subject><subject>Mathematical models</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Medical prognosis</subject><subject>Medical screening</subject><subject>Models, Statistical</subject><subject>Neuroimaging</subject><subject>Principal components analysis</subject><subject>Proportional Hazards Models</subject><subject>Regression Analysis</subject><subject>Regression coefficients</subject><subject>Risk analysis</subject><subject>Risk factors</subject><subject>Scientific visualization</subject><subject>Simulation</subject><subject>Statistical analysis</subject><subject>Visualization</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><recordid>eNp1kEtLw0AUhQdRbK3-ADcScOMmdd6TWZbiCwpudB0m82in5FFnkkr99Sa0Kiiu7uJ859x7DwCXCE4REuIWSo5xBjHGCBEhKD8CY0SFSCEh9BiMBz0dgBE4i3ENIRSQylMwIpwyxDEag8XMGN_6rU1W6kMFE5OqMbZM3n27Slpf2XSrws7Xy0Q31jmvva3bmKjaJL5Sy0HYBGu8bpsQz8GJU2W0F4c5Aa_3dy_zx3Tx_PA0ny1STTBsU2q4oo5kihVcF1RnWmLEBROEMSUYcVZYJ6FEQjoFMURGYIMYQ1gSwgpNJuBmn7sJzVtnY5tXPmpblqq2TRdzLCjlXEoue_T6F7puulD31_WUQARjmWU9hfaUDk2Mwbp8E_r3wi5HMB-qzv9U3XuuDsldUVnz7fjqtgemeyCqpf1Z-3_iJ0sNhIc</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Yang, Qi</creator><creator>Wang, Chuchu</creator><creator>He, Haijin</creator><creator>Zhou, Xiaoxiao</creator><creator>Song, Xinyuan</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4877-3200</orcidid></search><sort><creationdate>202302</creationdate><title>Additive hazards model with time-varying coefficients and imaging predictors</title><author>Yang, Qi ; Wang, Chuchu ; He, Haijin ; Zhou, Xiaoxiao ; Song, Xinyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-4d6a4f38a5b6cb4c8c9216757355a753fe7ef909179fa0201d72d155129335bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Additives</topic><topic>Alzheimer's disease</topic><topic>Computer Simulation</topic><topic>Confidence intervals</topic><topic>Counting</topic><topic>Dimensional analysis</topic><topic>Hazard assessment</topic><topic>Mathematical models</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Medical prognosis</topic><topic>Medical screening</topic><topic>Models, Statistical</topic><topic>Neuroimaging</topic><topic>Principal components analysis</topic><topic>Proportional Hazards Models</topic><topic>Regression Analysis</topic><topic>Regression coefficients</topic><topic>Risk analysis</topic><topic>Risk factors</topic><topic>Scientific visualization</topic><topic>Simulation</topic><topic>Statistical analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Wang, Chuchu</creatorcontrib><creatorcontrib>He, Haijin</creatorcontrib><creatorcontrib>Zhou, Xiaoxiao</creatorcontrib><creatorcontrib>Song, Xinyuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Qi</au><au>Wang, Chuchu</au><au>He, Haijin</au><au>Zhou, Xiaoxiao</au><au>Song, Xinyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Additive hazards model with time-varying coefficients and imaging predictors</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2023-02</date><risdate>2023</risdate><volume>32</volume><issue>2</issue><spage>353</spage><epage>372</epage><pages>353-372</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>Conventional hazard regression analyses frequently assume constant regression coefficients and scalar covariates. However, some covariate effects may vary with time. Moreover, medical imaging has become an increasingly important tool in screening, diagnosis, and prognosis of various diseases, given its information visualization and quantitative assessment. This study considers an additive hazards model with time-varying coefficients and imaging predictors to examine the dynamic effects of potential scalar and imaging risk factors for the failure of interest. We develop a two-stage approach that comprises the high-dimensional functional principal component analysis technique in the first stage and the counting process-based estimating equation approach in the second stage. In addition, we construct the pointwise confidence intervals for the proposed estimators and provide a significance test for the effects of scalar and imaging covariates. Simulation studies demonstrate the satisfactory performance of the proposed method. An application to the Alzheimer’s disease neuroimaging initiative study further illustrates the utility of the methodology.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>36451621</pmid><doi>10.1177/09622802221137746</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-4877-3200</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0962-2802
ispartof Statistical methods in medical research, 2023-02, Vol.32 (2), p.353-372
issn 0962-2802
1477-0334
language eng
recordid cdi_proquest_miscellaneous_2744669969
source Access via SAGE; MEDLINE; Applied Social Sciences Index & Abstracts (ASSIA)
subjects Additives
Alzheimer's disease
Computer Simulation
Confidence intervals
Counting
Dimensional analysis
Hazard assessment
Mathematical models
Medical diagnosis
Medical imaging
Medical prognosis
Medical screening
Models, Statistical
Neuroimaging
Principal components analysis
Proportional Hazards Models
Regression Analysis
Regression coefficients
Risk analysis
Risk factors
Scientific visualization
Simulation
Statistical analysis
Visualization
title Additive hazards model with time-varying coefficients and imaging predictors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T10%3A09%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Additive%20hazards%20model%20with%20time-varying%20coefficients%20and%20imaging%20predictors&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Yang,%20Qi&rft.date=2023-02&rft.volume=32&rft.issue=2&rft.spage=353&rft.epage=372&rft.pages=353-372&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/09622802221137746&rft_dat=%3Cproquest_cross%3E2744669969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771322988&rft_id=info:pmid/36451621&rft_sage_id=10.1177_09622802221137746&rfr_iscdi=true