Genetically encoded dual fluorophore reporters for graded oxygen-sensing in light microscopy
Hypoxia is an essential regulator of cell metabolism, affects cell migration and angiogenesis during development and contributes to a wide range of pathological conditions. Multiple techniques to assess hypoxia through oxygen-imaging have been developed. However, significant limitations include low...
Gespeichert in:
Veröffentlicht in: | Biosensors & bioelectronics 2023-02, Vol.221, p.114917-114917, Article 114917 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114917 |
---|---|
container_issue | |
container_start_page | 114917 |
container_title | Biosensors & bioelectronics |
container_volume | 221 |
creator | Bauer, Nadine Maisuls, Ivan Pereira da Graça, Abel Reinhardt, Dirk Erapaneedi, Raghu Kirschnick, Nils Schäfers, Michael Grashoff, Carsten Landfester, Katharina Vestweber, Dietmar Strassert, Cristian A. Kiefer, Friedemann |
description | Hypoxia is an essential regulator of cell metabolism, affects cell migration and angiogenesis during development and contributes to a wide range of pathological conditions. Multiple techniques to assess hypoxia through oxygen-imaging have been developed. However, significant limitations include low spatiotemporal resolution, limited tissue penetration of exogenous probes and non-dynamic signals due to irreversible probe-chemistry. First genetically-encoded reporters only partly overcame these limitations as the green and red fluorescent proteins (GFP/RFP) families require molecular oxygen for fluorescence. For the herein presented ratiometric and FRET-FLIM reporters dUnORS and dUnOFLS, we exploited oxygen-dependent maturation in combination with the hypoxia-tolerant fluorescent-protein UnaG. For ratiometric measurements, UnaG was fused to the orange large Stokes Shift protein CyOFP1, allowing excitation with a single light-source, while fusion of UnaG with mOrange2 allowed FRET-FLIM analysis. Imaging live or fixed cultured cells for calibration, we applied both reporters in spheroid and tumor transplantation-models and obtained graded information on oxygen-availability at cellular resolution, establishing these sensors as promising tools for visualizing oxygen-gradients in-vivo.
•Bipartite cellular hypoxia sensors of O2-tolerant & -sensitive fluorescent proteins.•Genetically encoded reporters for intensity- or FRET /FLIM-based measurements.•Graded live-cell microscopic oxygen-imaging in vitro using dUnORS and dUnOFLS.•Optimal working range well within physiological cellular oxygen-concentrations.•Sensors visualized oxygen gradients in intracranial brain tumors ex vivo. |
doi_str_mv | 10.1016/j.bios.2022.114917 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2744669022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566322009575</els_id><sourcerecordid>2744669022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-5b9982dff5b4aa5260b11be86f1b0f898d6501eac640d6034c6b780902a703bc3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQQIMouK7-gKccvbRO0jZtwYssugoLXvQmhDSddrNkm5q04v69LfXsaS7vDTOPkFsGMQMm7g9xZVyIOXAeM5aWLD8jK1bkSZTyJDsnKygzEWVCJJfkKoQDAOSshBX53GKHg9HK2hPFTrsaa1qPytLGjs67fu88Uo-98wP6QBvnaevVTLmfU4tdFLALpmup6ag17X6gR6O9C9r1p2ty0Sgb8OZvrsnH89P75iXavW1fN4-7SCd5PkRZVZYFr5smq1KlMi6gYqzCQjSsgqYoi1pkwFBpkUItIEm1qPICSuAqh6TSyZrcLXt7775GDIM8mqDRWtWhG4PkeZoKMfF8QvmCzjcGj43svTkqf5IM5JxSHuScUs4p5ZJykh4WCacnvg16GbSZYmFtPOpB1s78p_8CSP1-Og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2744669022</pqid></control><display><type>article</type><title>Genetically encoded dual fluorophore reporters for graded oxygen-sensing in light microscopy</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bauer, Nadine ; Maisuls, Ivan ; Pereira da Graça, Abel ; Reinhardt, Dirk ; Erapaneedi, Raghu ; Kirschnick, Nils ; Schäfers, Michael ; Grashoff, Carsten ; Landfester, Katharina ; Vestweber, Dietmar ; Strassert, Cristian A. ; Kiefer, Friedemann</creator><creatorcontrib>Bauer, Nadine ; Maisuls, Ivan ; Pereira da Graça, Abel ; Reinhardt, Dirk ; Erapaneedi, Raghu ; Kirschnick, Nils ; Schäfers, Michael ; Grashoff, Carsten ; Landfester, Katharina ; Vestweber, Dietmar ; Strassert, Cristian A. ; Kiefer, Friedemann</creatorcontrib><description>Hypoxia is an essential regulator of cell metabolism, affects cell migration and angiogenesis during development and contributes to a wide range of pathological conditions. Multiple techniques to assess hypoxia through oxygen-imaging have been developed. However, significant limitations include low spatiotemporal resolution, limited tissue penetration of exogenous probes and non-dynamic signals due to irreversible probe-chemistry. First genetically-encoded reporters only partly overcame these limitations as the green and red fluorescent proteins (GFP/RFP) families require molecular oxygen for fluorescence. For the herein presented ratiometric and FRET-FLIM reporters dUnORS and dUnOFLS, we exploited oxygen-dependent maturation in combination with the hypoxia-tolerant fluorescent-protein UnaG. For ratiometric measurements, UnaG was fused to the orange large Stokes Shift protein CyOFP1, allowing excitation with a single light-source, while fusion of UnaG with mOrange2 allowed FRET-FLIM analysis. Imaging live or fixed cultured cells for calibration, we applied both reporters in spheroid and tumor transplantation-models and obtained graded information on oxygen-availability at cellular resolution, establishing these sensors as promising tools for visualizing oxygen-gradients in-vivo.
•Bipartite cellular hypoxia sensors of O2-tolerant & -sensitive fluorescent proteins.•Genetically encoded reporters for intensity- or FRET /FLIM-based measurements.•Graded live-cell microscopic oxygen-imaging in vitro using dUnORS and dUnOFLS.•Optimal working range well within physiological cellular oxygen-concentrations.•Sensors visualized oxygen gradients in intracranial brain tumors ex vivo.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2022.114917</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Fluorescent reporter ; FRET-FLIM ; Live-cell imaging ; Oxygen-sensing ; Ratiometric sensor ; Tumor-hypoxia</subject><ispartof>Biosensors & bioelectronics, 2023-02, Vol.221, p.114917-114917, Article 114917</ispartof><rights>2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-5b9982dff5b4aa5260b11be86f1b0f898d6501eac640d6034c6b780902a703bc3</citedby><cites>FETCH-LOGICAL-c377t-5b9982dff5b4aa5260b11be86f1b0f898d6501eac640d6034c6b780902a703bc3</cites><orcidid>0000-0002-3002-8237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bios.2022.114917$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Bauer, Nadine</creatorcontrib><creatorcontrib>Maisuls, Ivan</creatorcontrib><creatorcontrib>Pereira da Graça, Abel</creatorcontrib><creatorcontrib>Reinhardt, Dirk</creatorcontrib><creatorcontrib>Erapaneedi, Raghu</creatorcontrib><creatorcontrib>Kirschnick, Nils</creatorcontrib><creatorcontrib>Schäfers, Michael</creatorcontrib><creatorcontrib>Grashoff, Carsten</creatorcontrib><creatorcontrib>Landfester, Katharina</creatorcontrib><creatorcontrib>Vestweber, Dietmar</creatorcontrib><creatorcontrib>Strassert, Cristian A.</creatorcontrib><creatorcontrib>Kiefer, Friedemann</creatorcontrib><title>Genetically encoded dual fluorophore reporters for graded oxygen-sensing in light microscopy</title><title>Biosensors & bioelectronics</title><description>Hypoxia is an essential regulator of cell metabolism, affects cell migration and angiogenesis during development and contributes to a wide range of pathological conditions. Multiple techniques to assess hypoxia through oxygen-imaging have been developed. However, significant limitations include low spatiotemporal resolution, limited tissue penetration of exogenous probes and non-dynamic signals due to irreversible probe-chemistry. First genetically-encoded reporters only partly overcame these limitations as the green and red fluorescent proteins (GFP/RFP) families require molecular oxygen for fluorescence. For the herein presented ratiometric and FRET-FLIM reporters dUnORS and dUnOFLS, we exploited oxygen-dependent maturation in combination with the hypoxia-tolerant fluorescent-protein UnaG. For ratiometric measurements, UnaG was fused to the orange large Stokes Shift protein CyOFP1, allowing excitation with a single light-source, while fusion of UnaG with mOrange2 allowed FRET-FLIM analysis. Imaging live or fixed cultured cells for calibration, we applied both reporters in spheroid and tumor transplantation-models and obtained graded information on oxygen-availability at cellular resolution, establishing these sensors as promising tools for visualizing oxygen-gradients in-vivo.
•Bipartite cellular hypoxia sensors of O2-tolerant & -sensitive fluorescent proteins.•Genetically encoded reporters for intensity- or FRET /FLIM-based measurements.•Graded live-cell microscopic oxygen-imaging in vitro using dUnORS and dUnOFLS.•Optimal working range well within physiological cellular oxygen-concentrations.•Sensors visualized oxygen gradients in intracranial brain tumors ex vivo.</description><subject>Fluorescent reporter</subject><subject>FRET-FLIM</subject><subject>Live-cell imaging</subject><subject>Oxygen-sensing</subject><subject>Ratiometric sensor</subject><subject>Tumor-hypoxia</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQQIMouK7-gKccvbRO0jZtwYssugoLXvQmhDSddrNkm5q04v69LfXsaS7vDTOPkFsGMQMm7g9xZVyIOXAeM5aWLD8jK1bkSZTyJDsnKygzEWVCJJfkKoQDAOSshBX53GKHg9HK2hPFTrsaa1qPytLGjs67fu88Uo-98wP6QBvnaevVTLmfU4tdFLALpmup6ag17X6gR6O9C9r1p2ty0Sgb8OZvrsnH89P75iXavW1fN4-7SCd5PkRZVZYFr5smq1KlMi6gYqzCQjSsgqYoi1pkwFBpkUItIEm1qPICSuAqh6TSyZrcLXt7775GDIM8mqDRWtWhG4PkeZoKMfF8QvmCzjcGj43svTkqf5IM5JxSHuScUs4p5ZJykh4WCacnvg16GbSZYmFtPOpB1s78p_8CSP1-Og</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Bauer, Nadine</creator><creator>Maisuls, Ivan</creator><creator>Pereira da Graça, Abel</creator><creator>Reinhardt, Dirk</creator><creator>Erapaneedi, Raghu</creator><creator>Kirschnick, Nils</creator><creator>Schäfers, Michael</creator><creator>Grashoff, Carsten</creator><creator>Landfester, Katharina</creator><creator>Vestweber, Dietmar</creator><creator>Strassert, Cristian A.</creator><creator>Kiefer, Friedemann</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3002-8237</orcidid></search><sort><creationdate>20230201</creationdate><title>Genetically encoded dual fluorophore reporters for graded oxygen-sensing in light microscopy</title><author>Bauer, Nadine ; Maisuls, Ivan ; Pereira da Graça, Abel ; Reinhardt, Dirk ; Erapaneedi, Raghu ; Kirschnick, Nils ; Schäfers, Michael ; Grashoff, Carsten ; Landfester, Katharina ; Vestweber, Dietmar ; Strassert, Cristian A. ; Kiefer, Friedemann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-5b9982dff5b4aa5260b11be86f1b0f898d6501eac640d6034c6b780902a703bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Fluorescent reporter</topic><topic>FRET-FLIM</topic><topic>Live-cell imaging</topic><topic>Oxygen-sensing</topic><topic>Ratiometric sensor</topic><topic>Tumor-hypoxia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bauer, Nadine</creatorcontrib><creatorcontrib>Maisuls, Ivan</creatorcontrib><creatorcontrib>Pereira da Graça, Abel</creatorcontrib><creatorcontrib>Reinhardt, Dirk</creatorcontrib><creatorcontrib>Erapaneedi, Raghu</creatorcontrib><creatorcontrib>Kirschnick, Nils</creatorcontrib><creatorcontrib>Schäfers, Michael</creatorcontrib><creatorcontrib>Grashoff, Carsten</creatorcontrib><creatorcontrib>Landfester, Katharina</creatorcontrib><creatorcontrib>Vestweber, Dietmar</creatorcontrib><creatorcontrib>Strassert, Cristian A.</creatorcontrib><creatorcontrib>Kiefer, Friedemann</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biosensors & bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bauer, Nadine</au><au>Maisuls, Ivan</au><au>Pereira da Graça, Abel</au><au>Reinhardt, Dirk</au><au>Erapaneedi, Raghu</au><au>Kirschnick, Nils</au><au>Schäfers, Michael</au><au>Grashoff, Carsten</au><au>Landfester, Katharina</au><au>Vestweber, Dietmar</au><au>Strassert, Cristian A.</au><au>Kiefer, Friedemann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetically encoded dual fluorophore reporters for graded oxygen-sensing in light microscopy</atitle><jtitle>Biosensors & bioelectronics</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>221</volume><spage>114917</spage><epage>114917</epage><pages>114917-114917</pages><artnum>114917</artnum><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Hypoxia is an essential regulator of cell metabolism, affects cell migration and angiogenesis during development and contributes to a wide range of pathological conditions. Multiple techniques to assess hypoxia through oxygen-imaging have been developed. However, significant limitations include low spatiotemporal resolution, limited tissue penetration of exogenous probes and non-dynamic signals due to irreversible probe-chemistry. First genetically-encoded reporters only partly overcame these limitations as the green and red fluorescent proteins (GFP/RFP) families require molecular oxygen for fluorescence. For the herein presented ratiometric and FRET-FLIM reporters dUnORS and dUnOFLS, we exploited oxygen-dependent maturation in combination with the hypoxia-tolerant fluorescent-protein UnaG. For ratiometric measurements, UnaG was fused to the orange large Stokes Shift protein CyOFP1, allowing excitation with a single light-source, while fusion of UnaG with mOrange2 allowed FRET-FLIM analysis. Imaging live or fixed cultured cells for calibration, we applied both reporters in spheroid and tumor transplantation-models and obtained graded information on oxygen-availability at cellular resolution, establishing these sensors as promising tools for visualizing oxygen-gradients in-vivo.
•Bipartite cellular hypoxia sensors of O2-tolerant & -sensitive fluorescent proteins.•Genetically encoded reporters for intensity- or FRET /FLIM-based measurements.•Graded live-cell microscopic oxygen-imaging in vitro using dUnORS and dUnOFLS.•Optimal working range well within physiological cellular oxygen-concentrations.•Sensors visualized oxygen gradients in intracranial brain tumors ex vivo.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.bios.2022.114917</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3002-8237</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5663 |
ispartof | Biosensors & bioelectronics, 2023-02, Vol.221, p.114917-114917, Article 114917 |
issn | 0956-5663 1873-4235 |
language | eng |
recordid | cdi_proquest_miscellaneous_2744669022 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Fluorescent reporter FRET-FLIM Live-cell imaging Oxygen-sensing Ratiometric sensor Tumor-hypoxia |
title | Genetically encoded dual fluorophore reporters for graded oxygen-sensing in light microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A18%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetically%20encoded%20dual%20fluorophore%20reporters%20for%20graded%20oxygen-sensing%20in%20light%20microscopy&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Bauer,%20Nadine&rft.date=2023-02-01&rft.volume=221&rft.spage=114917&rft.epage=114917&rft.pages=114917-114917&rft.artnum=114917&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2022.114917&rft_dat=%3Cproquest_cross%3E2744669022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2744669022&rft_id=info:pmid/&rft_els_id=S0956566322009575&rfr_iscdi=true |