Measuring soil moisture with imaging radars

An empirical algorithm for the retrieval of soil moisture content and surface root mean square (RMS) height from remotely sensed radar data was developed using scatterometer data. The algorithm is optimized for bare surfaces and requires two copolarized channels at a frequency between 1.5 and 11 GHz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Transactions on Geoscience and Remote Sensing 1995-07, Vol.33 (4), p.915-926
Hauptverfasser: Dubois, P.C., van Zyl, J., Engman, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 926
container_issue 4
container_start_page 915
container_title IEEE Transactions on Geoscience and Remote Sensing
container_volume 33
creator Dubois, P.C.
van Zyl, J.
Engman, T.
description An empirical algorithm for the retrieval of soil moisture content and surface root mean square (RMS) height from remotely sensed radar data was developed using scatterometer data. The algorithm is optimized for bare surfaces and requires two copolarized channels at a frequency between 1.5 and 11 GHz. It gives best results for kh/spl les/2.5, /spl mu//sub /spl upsi///spl les/35%, and /spl theta//spl ges/30/spl deg/. Omitting the usually weaker hv-polarized returns makes the algorithm less sensitive to system cross-talk and system noise, simplifies the calibration process and adds robustness to the algorithm in the presence of vegetation. However, inversion results indicate that significant amounts of vegetation (NDVI>0.4) cause the algorithm to underestimate soil moisture and overestimate RMS height. A simple criteria based on the /spl sigma//sub hv//sup 0///spl sigma//sub vv//sup 0/ ratio is developed to select the areas where the inversion is not impaired by the vegetation. The inversion accuracy is assessed on the original scatterometer data sets but also on several SAR data sets by comparing the derived soil moisture values with in-situ measurements collected over a variety of scenes between 1991 and 1994. Both spaceborne (SIR-C) and airborne (AIRSAR) data are used in the test. Over this large sample of conditions, the RMS error in the soil moisture estimate is found to be less than 4.2% soil moisture.< >
doi_str_mv 10.1109/36.406677
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_27440159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>406677</ieee_id><sourcerecordid>27440159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-5796045384ea084a86242d57f71502e93b5b0b7f32747955313886a1350810b63</originalsourceid><addsrcrecordid>eNqN0ctLw0AQBvBFFKyPg1dP8SKIpM5k30cpvqDiRc_LJt20K2lSdzeI_70pKV7raQ7fj4GZj5ALhCki6DsqpgyEkPKATJBzlYNg7JBMALXIC6WLY3IS4ycAMo5yQm5fnY198O0yi51vsnXnY-qDy759WmV-bZfbKNiFDfGMHNW2ie58N0_Jx-PD--w5n789vczu53nFKKacSy2AcaqYs6CYVaJgxYLLWiKHwmla8hJKWdNCMqk5p0iVEhYpB4VQCnpKrsa9XUzexMonV62qrm1dlQxSIbQazPVoNqH76l1MZu1j5ZrGtq7roxlOZVwr-Q9ItQZO90PJGCDXeyEqlFQiG-DNCKvQxRhcbTZh-Gj4MQhm25ahwoxtDfZytN459-d24S8LCoqc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18173714</pqid></control><display><type>article</type><title>Measuring soil moisture with imaging radars</title><source>IEEE Electronic Library (IEL)</source><creator>Dubois, P.C. ; van Zyl, J. ; Engman, T.</creator><creatorcontrib>Dubois, P.C. ; van Zyl, J. ; Engman, T.</creatorcontrib><description>An empirical algorithm for the retrieval of soil moisture content and surface root mean square (RMS) height from remotely sensed radar data was developed using scatterometer data. The algorithm is optimized for bare surfaces and requires two copolarized channels at a frequency between 1.5 and 11 GHz. It gives best results for kh/spl les/2.5, /spl mu//sub /spl upsi///spl les/35%, and /spl theta//spl ges/30/spl deg/. Omitting the usually weaker hv-polarized returns makes the algorithm less sensitive to system cross-talk and system noise, simplifies the calibration process and adds robustness to the algorithm in the presence of vegetation. However, inversion results indicate that significant amounts of vegetation (NDVI&gt;0.4) cause the algorithm to underestimate soil moisture and overestimate RMS height. A simple criteria based on the /spl sigma//sub hv//sup 0///spl sigma//sub vv//sup 0/ ratio is developed to select the areas where the inversion is not impaired by the vegetation. The inversion accuracy is assessed on the original scatterometer data sets but also on several SAR data sets by comparing the derived soil moisture values with in-situ measurements collected over a variety of scenes between 1991 and 1994. Both spaceborne (SIR-C) and airborne (AIRSAR) data are used in the test. Over this large sample of conditions, the RMS error in the soil moisture estimate is found to be less than 4.2% soil moisture.&lt; &gt;</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/36.406677</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>AERIAL SURVEYING ; ALGORITHMS ; CLIMATIC CHANGE ; Content based retrieval ; ENVIRONMENTAL SCIENCES ; GEOSCIENCES ; IMAGE PROCESSING ; Information retrieval ; MOISTURE ; Moisture measurement ; Radar imaging ; Radar measurements ; Radar remote sensing ; REMOTE SENSING ; SENSITIVITY ; Soil measurements ; Soil moisture ; SOILS ; Spaceborne radar ; Vegetation mapping</subject><ispartof>IEEE Transactions on Geoscience and Remote Sensing, 1995-07, Vol.33 (4), p.915-926</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-5796045384ea084a86242d57f71502e93b5b0b7f32747955313886a1350810b63</citedby><cites>FETCH-LOGICAL-c431t-5796045384ea084a86242d57f71502e93b5b0b7f32747955313886a1350810b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/406677$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/406677$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/136698$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dubois, P.C.</creatorcontrib><creatorcontrib>van Zyl, J.</creatorcontrib><creatorcontrib>Engman, T.</creatorcontrib><title>Measuring soil moisture with imaging radars</title><title>IEEE Transactions on Geoscience and Remote Sensing</title><addtitle>TGRS</addtitle><description>An empirical algorithm for the retrieval of soil moisture content and surface root mean square (RMS) height from remotely sensed radar data was developed using scatterometer data. The algorithm is optimized for bare surfaces and requires two copolarized channels at a frequency between 1.5 and 11 GHz. It gives best results for kh/spl les/2.5, /spl mu//sub /spl upsi///spl les/35%, and /spl theta//spl ges/30/spl deg/. Omitting the usually weaker hv-polarized returns makes the algorithm less sensitive to system cross-talk and system noise, simplifies the calibration process and adds robustness to the algorithm in the presence of vegetation. However, inversion results indicate that significant amounts of vegetation (NDVI&gt;0.4) cause the algorithm to underestimate soil moisture and overestimate RMS height. A simple criteria based on the /spl sigma//sub hv//sup 0///spl sigma//sub vv//sup 0/ ratio is developed to select the areas where the inversion is not impaired by the vegetation. The inversion accuracy is assessed on the original scatterometer data sets but also on several SAR data sets by comparing the derived soil moisture values with in-situ measurements collected over a variety of scenes between 1991 and 1994. Both spaceborne (SIR-C) and airborne (AIRSAR) data are used in the test. Over this large sample of conditions, the RMS error in the soil moisture estimate is found to be less than 4.2% soil moisture.&lt; &gt;</description><subject>AERIAL SURVEYING</subject><subject>ALGORITHMS</subject><subject>CLIMATIC CHANGE</subject><subject>Content based retrieval</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>GEOSCIENCES</subject><subject>IMAGE PROCESSING</subject><subject>Information retrieval</subject><subject>MOISTURE</subject><subject>Moisture measurement</subject><subject>Radar imaging</subject><subject>Radar measurements</subject><subject>Radar remote sensing</subject><subject>REMOTE SENSING</subject><subject>SENSITIVITY</subject><subject>Soil measurements</subject><subject>Soil moisture</subject><subject>SOILS</subject><subject>Spaceborne radar</subject><subject>Vegetation mapping</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqN0ctLw0AQBvBFFKyPg1dP8SKIpM5k30cpvqDiRc_LJt20K2lSdzeI_70pKV7raQ7fj4GZj5ALhCki6DsqpgyEkPKATJBzlYNg7JBMALXIC6WLY3IS4ycAMo5yQm5fnY198O0yi51vsnXnY-qDy759WmV-bZfbKNiFDfGMHNW2ie58N0_Jx-PD--w5n789vczu53nFKKacSy2AcaqYs6CYVaJgxYLLWiKHwmla8hJKWdNCMqk5p0iVEhYpB4VQCnpKrsa9XUzexMonV62qrm1dlQxSIbQazPVoNqH76l1MZu1j5ZrGtq7roxlOZVwr-Q9ItQZO90PJGCDXeyEqlFQiG-DNCKvQxRhcbTZh-Gj4MQhm25ahwoxtDfZytN459-d24S8LCoqc</recordid><startdate>19950701</startdate><enddate>19950701</enddate><creator>Dubois, P.C.</creator><creator>van Zyl, J.</creator><creator>Engman, T.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>FR3</scope><scope>KR7</scope><scope>OTOTI</scope></search><sort><creationdate>19950701</creationdate><title>Measuring soil moisture with imaging radars</title><author>Dubois, P.C. ; van Zyl, J. ; Engman, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-5796045384ea084a86242d57f71502e93b5b0b7f32747955313886a1350810b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>AERIAL SURVEYING</topic><topic>ALGORITHMS</topic><topic>CLIMATIC CHANGE</topic><topic>Content based retrieval</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>GEOSCIENCES</topic><topic>IMAGE PROCESSING</topic><topic>Information retrieval</topic><topic>MOISTURE</topic><topic>Moisture measurement</topic><topic>Radar imaging</topic><topic>Radar measurements</topic><topic>Radar remote sensing</topic><topic>REMOTE SENSING</topic><topic>SENSITIVITY</topic><topic>Soil measurements</topic><topic>Soil moisture</topic><topic>SOILS</topic><topic>Spaceborne radar</topic><topic>Vegetation mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubois, P.C.</creatorcontrib><creatorcontrib>van Zyl, J.</creatorcontrib><creatorcontrib>Engman, T.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>IEEE Transactions on Geoscience and Remote Sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dubois, P.C.</au><au>van Zyl, J.</au><au>Engman, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring soil moisture with imaging radars</atitle><jtitle>IEEE Transactions on Geoscience and Remote Sensing</jtitle><stitle>TGRS</stitle><date>1995-07-01</date><risdate>1995</risdate><volume>33</volume><issue>4</issue><spage>915</spage><epage>926</epage><pages>915-926</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>An empirical algorithm for the retrieval of soil moisture content and surface root mean square (RMS) height from remotely sensed radar data was developed using scatterometer data. The algorithm is optimized for bare surfaces and requires two copolarized channels at a frequency between 1.5 and 11 GHz. It gives best results for kh/spl les/2.5, /spl mu//sub /spl upsi///spl les/35%, and /spl theta//spl ges/30/spl deg/. Omitting the usually weaker hv-polarized returns makes the algorithm less sensitive to system cross-talk and system noise, simplifies the calibration process and adds robustness to the algorithm in the presence of vegetation. However, inversion results indicate that significant amounts of vegetation (NDVI&gt;0.4) cause the algorithm to underestimate soil moisture and overestimate RMS height. A simple criteria based on the /spl sigma//sub hv//sup 0///spl sigma//sub vv//sup 0/ ratio is developed to select the areas where the inversion is not impaired by the vegetation. The inversion accuracy is assessed on the original scatterometer data sets but also on several SAR data sets by comparing the derived soil moisture values with in-situ measurements collected over a variety of scenes between 1991 and 1994. Both spaceborne (SIR-C) and airborne (AIRSAR) data are used in the test. Over this large sample of conditions, the RMS error in the soil moisture estimate is found to be less than 4.2% soil moisture.&lt; &gt;</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/36.406677</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE Transactions on Geoscience and Remote Sensing, 1995-07, Vol.33 (4), p.915-926
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_miscellaneous_27440159
source IEEE Electronic Library (IEL)
subjects AERIAL SURVEYING
ALGORITHMS
CLIMATIC CHANGE
Content based retrieval
ENVIRONMENTAL SCIENCES
GEOSCIENCES
IMAGE PROCESSING
Information retrieval
MOISTURE
Moisture measurement
Radar imaging
Radar measurements
Radar remote sensing
REMOTE SENSING
SENSITIVITY
Soil measurements
Soil moisture
SOILS
Spaceborne radar
Vegetation mapping
title Measuring soil moisture with imaging radars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A59%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20soil%20moisture%20with%20imaging%20radars&rft.jtitle=IEEE%20Transactions%20on%20Geoscience%20and%20Remote%20Sensing&rft.au=Dubois,%20P.C.&rft.date=1995-07-01&rft.volume=33&rft.issue=4&rft.spage=915&rft.epage=926&rft.pages=915-926&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/36.406677&rft_dat=%3Cproquest_RIE%3E27440159%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18173714&rft_id=info:pmid/&rft_ieee_id=406677&rfr_iscdi=true