Semi-supervised medical image segmentation using adversarial consistency learning and dynamic convolution network

Popular semi-supervised medical image segmentation networks often suffer from error supervision from unlabeled data since they usually use consistency learning under different data perturbations to regularize model training. These networks ignore the relationship between labeled and unlabeled data,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2023-05, Vol.42 (5), p.1-1
Hauptverfasser: Lei, Tao, Zhang, Dong, Du, Xiaogang, Wang, Xuan, Wan, Yong, Nandi, Asoke K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!