TBBPA induces inflammation, apoptosis, and necrosis of skeletal muscle in mice through the ROS/Nrf2/TNF-α signaling pathway
Tetrabromobisphenol A (TBBPA) is present in large quantities in the environment due to its widespread use. And TBBPA is capable of accumulating in animals, entering the ecological chain and causing widespread damage to organisms. TBBPA is capable of causing the onset of oxidative stress, which induc...
Gespeichert in:
Veröffentlicht in: | Environmental pollution (1987) 2023-01, Vol.317, p.120745-120745, Article 120745 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tetrabromobisphenol A (TBBPA) is present in large quantities in the environment due to its widespread use. And TBBPA is capable of accumulating in animals, entering the ecological chain and causing widespread damage to organisms. TBBPA is capable of causing the onset of oxidative stress, which induces tissue damage and cell death, which in turn affects the physiological function of tissues. Skeletal muscle is a critical tissue for maintaining growth, movement, and health in the body. However, the mechanism of TBBPA-induced skeletal muscle injury remains unclear. In this study, we constructed mouse skeletal muscle models (10, 20, and 40 mg/kg TBBPA) and mouse myoblasts (C2C12) cell models (2,4, and 8 μg/L TBBPA) at different concentrations. The results of this experiment showed that under TBBPA treatment, the levels of reactive oxygen species (ROS) and Malondialdehyde (MDA) in mouse skeletal and C2C12 cells were increased significantly, but the activities of some antioxidant enzymes decreased. TBBPA can inhibit Nuclear factor E2-related factor 2 (Nrf2) entry into the nucleus, thus affecting the expression of the Nrf2 downstream factors. With the increase of TBBPA concentration, the expression levels of inflammatory factors were significantly increased, while the anti-apoptotic factors were significantly decreased. The expression of pro-apoptotic factors increased in a dose-dependent manner. Programmed necrosis-related factors were also significantly elevated. Our results suggest that TBBPA induces oxidative stress and inflammation, apoptosis, and necrosis in the skeletal muscle of mice by regulating Nrf2/ROS/TNF-α signaling pathway.
[Display omitted]
•TBBPA exposure can cause apoptosis, necrosis and inflammation in skeletal muscle.•TBBPA can inhibit the entry of Nrf2 into the nucleus.•TBBPA can destroy the antioxidant regulatory system to induce oxidative stress.•TBBPA induces damage of skeletal muscle cells in mice through oxidative stress. |
---|---|
ISSN: | 0269-7491 1873-6424 |
DOI: | 10.1016/j.envpol.2022.120745 |