Planting Anion Channels in a Negatively Charged Polyamide Layer for Highly Selective Nanofiltration Separation
A nanofiltration (NF) membrane with high salt permeation and high retention of small organics is appealing for the treatment of high-salinity organic wastewater. However, the conventional negatively charged NF membranes commonly show high retention of divalent anions (e.g., SO4 2–), and the reported...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2022-12, Vol.56 (24), p.18018-18029 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18029 |
---|---|
container_issue | 24 |
container_start_page | 18018 |
container_title | Environmental science & technology |
container_volume | 56 |
creator | Ren, Yuling Qi, Pengfei Wan, Yinhua Chen, Chulong Chen, Xiangrong Feng, Shichao Luo, Jianquan |
description | A nanofiltration (NF) membrane with high salt permeation and high retention of small organics is appealing for the treatment of high-salinity organic wastewater. However, the conventional negatively charged NF membranes commonly show high retention of divalent anions (e.g., SO4 2–), and the reported positively charged NF membranes normally suffer super low selectivity for small organics/Na2SO4 and high fouling potential. In this work, we propose a novel “etching–swelling–planting” strategy assisted by interfacial polymerization and mussel-inspired catecholamine chemistry to prepare a mix-charged NF membrane. By X-ray photoelectron spectroscopy depth profiling and pore size distribution analysis, it was found that such a strategy could not only deepen the positive charge distribution but also narrow the pore size. Molecular dynamics confirm that the planted polyethyleneimine chains play an important role to relay SO4 2– ions to facilitate their transport across the membrane, thus reversing the retention of Na2SO4 and glucose (43 vs 71%). Meanwhile, due to the high surface hydrophilicity and smoothness as well as the preservation of abundant negatively charged groups (−OH and −COOH) inside the separation layer, the obtained membrane exhibited excellent antifouling performance, even for the coking wastewater. This study advances the importance of vertical charge distribution of NF membranes in separation selectivity and antifouling performance. |
doi_str_mv | 10.1021/acs.est.2c06582 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2742658438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2742658438</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-6b36970ca7b143c52976316d5c2f1adc027af598bc633b68d405d02cf3c78d9e3</originalsourceid><addsrcrecordid>eNp1kc9LwzAcxYMobk7P3iTgRZBu-dGk7XEMdcKYgyl4K2madhltOpNW2H9vyuYOgqd8IZ_3vsl7ANxiNMaI4ImQbqxcOyYScRaTMzDEjKCAxQyfgyFCmAYJ5Z8DcOXcFiFEKIovwYDyMGSE0yEwq0qYVpsSTo1uDJxthDGqclAbKOBSlaLV36ra9xe2VDlcNdVe1DpXcCH2ysKisXCuy41H1qpSssfhUpim0FVrvdqbrtVOHMZrcFGIyqmb4zkCH89P77N5sHh7eZ1NF4GgHLcBzyhPIiRFlOGQSkaSiFPMcyZJgUUuEYlEwZI4k5zSjMd5iFiOiCyojOI8UXQEHg6-O9t8dT6htNZOqsp_VjWdS0kUEh9YSGOP3v9Bt01njX-dpzgihGHOPDU5UNI2zllVpDura2H3KUZpX0Xqq0h79bEKr7g7-nZZrfIT_5u9Bx4PQK887fzP7ge3MpRa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760225165</pqid></control><display><type>article</type><title>Planting Anion Channels in a Negatively Charged Polyamide Layer for Highly Selective Nanofiltration Separation</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Ren, Yuling ; Qi, Pengfei ; Wan, Yinhua ; Chen, Chulong ; Chen, Xiangrong ; Feng, Shichao ; Luo, Jianquan</creator><creatorcontrib>Ren, Yuling ; Qi, Pengfei ; Wan, Yinhua ; Chen, Chulong ; Chen, Xiangrong ; Feng, Shichao ; Luo, Jianquan</creatorcontrib><description>A nanofiltration (NF) membrane with high salt permeation and high retention of small organics is appealing for the treatment of high-salinity organic wastewater. However, the conventional negatively charged NF membranes commonly show high retention of divalent anions (e.g., SO4 2–), and the reported positively charged NF membranes normally suffer super low selectivity for small organics/Na2SO4 and high fouling potential. In this work, we propose a novel “etching–swelling–planting” strategy assisted by interfacial polymerization and mussel-inspired catecholamine chemistry to prepare a mix-charged NF membrane. By X-ray photoelectron spectroscopy depth profiling and pore size distribution analysis, it was found that such a strategy could not only deepen the positive charge distribution but also narrow the pore size. Molecular dynamics confirm that the planted polyethyleneimine chains play an important role to relay SO4 2– ions to facilitate their transport across the membrane, thus reversing the retention of Na2SO4 and glucose (43 vs 71%). Meanwhile, due to the high surface hydrophilicity and smoothness as well as the preservation of abundant negatively charged groups (−OH and −COOH) inside the separation layer, the obtained membrane exhibited excellent antifouling performance, even for the coking wastewater. This study advances the importance of vertical charge distribution of NF membranes in separation selectivity and antifouling performance.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.2c06582</identifier><identifier>PMID: 36445263</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anion channels ; Anions ; Antifouling ; Antifouling substances ; Catecholamine ; Catecholamines ; Charge distribution ; Coking ; Depth profiling ; Etching ; Ion channels ; Ions ; Membranes ; Membranes, Artificial ; Molecular dynamics ; Nanofiltration ; Nanotechnology ; Nylons - chemistry ; Organic wastes ; Photoelectron spectroscopy ; Photoelectrons ; Planting ; Polyamide resins ; Polyamides ; Polyethyleneimine ; Pore size ; Pore size distribution ; Retention ; Selectivity ; Separation ; Size distribution ; Smoothness ; Sodium sulfate ; Treatment and Resource Recovery ; Vertical distribution ; Wastewater</subject><ispartof>Environmental science & technology, 2022-12, Vol.56 (24), p.18018-18029</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 20, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-6b36970ca7b143c52976316d5c2f1adc027af598bc633b68d405d02cf3c78d9e3</citedby><cites>FETCH-LOGICAL-a361t-6b36970ca7b143c52976316d5c2f1adc027af598bc633b68d405d02cf3c78d9e3</cites><orcidid>0000-0002-5265-4941 ; 0000-0002-9949-7779</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.2c06582$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.2c06582$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36445263$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ren, Yuling</creatorcontrib><creatorcontrib>Qi, Pengfei</creatorcontrib><creatorcontrib>Wan, Yinhua</creatorcontrib><creatorcontrib>Chen, Chulong</creatorcontrib><creatorcontrib>Chen, Xiangrong</creatorcontrib><creatorcontrib>Feng, Shichao</creatorcontrib><creatorcontrib>Luo, Jianquan</creatorcontrib><title>Planting Anion Channels in a Negatively Charged Polyamide Layer for Highly Selective Nanofiltration Separation</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>A nanofiltration (NF) membrane with high salt permeation and high retention of small organics is appealing for the treatment of high-salinity organic wastewater. However, the conventional negatively charged NF membranes commonly show high retention of divalent anions (e.g., SO4 2–), and the reported positively charged NF membranes normally suffer super low selectivity for small organics/Na2SO4 and high fouling potential. In this work, we propose a novel “etching–swelling–planting” strategy assisted by interfacial polymerization and mussel-inspired catecholamine chemistry to prepare a mix-charged NF membrane. By X-ray photoelectron spectroscopy depth profiling and pore size distribution analysis, it was found that such a strategy could not only deepen the positive charge distribution but also narrow the pore size. Molecular dynamics confirm that the planted polyethyleneimine chains play an important role to relay SO4 2– ions to facilitate their transport across the membrane, thus reversing the retention of Na2SO4 and glucose (43 vs 71%). Meanwhile, due to the high surface hydrophilicity and smoothness as well as the preservation of abundant negatively charged groups (−OH and −COOH) inside the separation layer, the obtained membrane exhibited excellent antifouling performance, even for the coking wastewater. This study advances the importance of vertical charge distribution of NF membranes in separation selectivity and antifouling performance.</description><subject>Anion channels</subject><subject>Anions</subject><subject>Antifouling</subject><subject>Antifouling substances</subject><subject>Catecholamine</subject><subject>Catecholamines</subject><subject>Charge distribution</subject><subject>Coking</subject><subject>Depth profiling</subject><subject>Etching</subject><subject>Ion channels</subject><subject>Ions</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Molecular dynamics</subject><subject>Nanofiltration</subject><subject>Nanotechnology</subject><subject>Nylons - chemistry</subject><subject>Organic wastes</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Planting</subject><subject>Polyamide resins</subject><subject>Polyamides</subject><subject>Polyethyleneimine</subject><subject>Pore size</subject><subject>Pore size distribution</subject><subject>Retention</subject><subject>Selectivity</subject><subject>Separation</subject><subject>Size distribution</subject><subject>Smoothness</subject><subject>Sodium sulfate</subject><subject>Treatment and Resource Recovery</subject><subject>Vertical distribution</subject><subject>Wastewater</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9LwzAcxYMobk7P3iTgRZBu-dGk7XEMdcKYgyl4K2madhltOpNW2H9vyuYOgqd8IZ_3vsl7ANxiNMaI4ImQbqxcOyYScRaTMzDEjKCAxQyfgyFCmAYJ5Z8DcOXcFiFEKIovwYDyMGSE0yEwq0qYVpsSTo1uDJxthDGqclAbKOBSlaLV36ra9xe2VDlcNdVe1DpXcCH2ysKisXCuy41H1qpSssfhUpim0FVrvdqbrtVOHMZrcFGIyqmb4zkCH89P77N5sHh7eZ1NF4GgHLcBzyhPIiRFlOGQSkaSiFPMcyZJgUUuEYlEwZI4k5zSjMd5iFiOiCyojOI8UXQEHg6-O9t8dT6htNZOqsp_VjWdS0kUEh9YSGOP3v9Bt01njX-dpzgihGHOPDU5UNI2zllVpDura2H3KUZpX0Xqq0h79bEKr7g7-nZZrfIT_5u9Bx4PQK887fzP7ge3MpRa</recordid><startdate>20221220</startdate><enddate>20221220</enddate><creator>Ren, Yuling</creator><creator>Qi, Pengfei</creator><creator>Wan, Yinhua</creator><creator>Chen, Chulong</creator><creator>Chen, Xiangrong</creator><creator>Feng, Shichao</creator><creator>Luo, Jianquan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5265-4941</orcidid><orcidid>https://orcid.org/0000-0002-9949-7779</orcidid></search><sort><creationdate>20221220</creationdate><title>Planting Anion Channels in a Negatively Charged Polyamide Layer for Highly Selective Nanofiltration Separation</title><author>Ren, Yuling ; Qi, Pengfei ; Wan, Yinhua ; Chen, Chulong ; Chen, Xiangrong ; Feng, Shichao ; Luo, Jianquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-6b36970ca7b143c52976316d5c2f1adc027af598bc633b68d405d02cf3c78d9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anion channels</topic><topic>Anions</topic><topic>Antifouling</topic><topic>Antifouling substances</topic><topic>Catecholamine</topic><topic>Catecholamines</topic><topic>Charge distribution</topic><topic>Coking</topic><topic>Depth profiling</topic><topic>Etching</topic><topic>Ion channels</topic><topic>Ions</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Molecular dynamics</topic><topic>Nanofiltration</topic><topic>Nanotechnology</topic><topic>Nylons - chemistry</topic><topic>Organic wastes</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Planting</topic><topic>Polyamide resins</topic><topic>Polyamides</topic><topic>Polyethyleneimine</topic><topic>Pore size</topic><topic>Pore size distribution</topic><topic>Retention</topic><topic>Selectivity</topic><topic>Separation</topic><topic>Size distribution</topic><topic>Smoothness</topic><topic>Sodium sulfate</topic><topic>Treatment and Resource Recovery</topic><topic>Vertical distribution</topic><topic>Wastewater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Yuling</creatorcontrib><creatorcontrib>Qi, Pengfei</creatorcontrib><creatorcontrib>Wan, Yinhua</creatorcontrib><creatorcontrib>Chen, Chulong</creatorcontrib><creatorcontrib>Chen, Xiangrong</creatorcontrib><creatorcontrib>Feng, Shichao</creatorcontrib><creatorcontrib>Luo, Jianquan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Yuling</au><au>Qi, Pengfei</au><au>Wan, Yinhua</au><au>Chen, Chulong</au><au>Chen, Xiangrong</au><au>Feng, Shichao</au><au>Luo, Jianquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Planting Anion Channels in a Negatively Charged Polyamide Layer for Highly Selective Nanofiltration Separation</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2022-12-20</date><risdate>2022</risdate><volume>56</volume><issue>24</issue><spage>18018</spage><epage>18029</epage><pages>18018-18029</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>A nanofiltration (NF) membrane with high salt permeation and high retention of small organics is appealing for the treatment of high-salinity organic wastewater. However, the conventional negatively charged NF membranes commonly show high retention of divalent anions (e.g., SO4 2–), and the reported positively charged NF membranes normally suffer super low selectivity for small organics/Na2SO4 and high fouling potential. In this work, we propose a novel “etching–swelling–planting” strategy assisted by interfacial polymerization and mussel-inspired catecholamine chemistry to prepare a mix-charged NF membrane. By X-ray photoelectron spectroscopy depth profiling and pore size distribution analysis, it was found that such a strategy could not only deepen the positive charge distribution but also narrow the pore size. Molecular dynamics confirm that the planted polyethyleneimine chains play an important role to relay SO4 2– ions to facilitate their transport across the membrane, thus reversing the retention of Na2SO4 and glucose (43 vs 71%). Meanwhile, due to the high surface hydrophilicity and smoothness as well as the preservation of abundant negatively charged groups (−OH and −COOH) inside the separation layer, the obtained membrane exhibited excellent antifouling performance, even for the coking wastewater. This study advances the importance of vertical charge distribution of NF membranes in separation selectivity and antifouling performance.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36445263</pmid><doi>10.1021/acs.est.2c06582</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5265-4941</orcidid><orcidid>https://orcid.org/0000-0002-9949-7779</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2022-12, Vol.56 (24), p.18018-18029 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_2742658438 |
source | MEDLINE; American Chemical Society Journals |
subjects | Anion channels Anions Antifouling Antifouling substances Catecholamine Catecholamines Charge distribution Coking Depth profiling Etching Ion channels Ions Membranes Membranes, Artificial Molecular dynamics Nanofiltration Nanotechnology Nylons - chemistry Organic wastes Photoelectron spectroscopy Photoelectrons Planting Polyamide resins Polyamides Polyethyleneimine Pore size Pore size distribution Retention Selectivity Separation Size distribution Smoothness Sodium sulfate Treatment and Resource Recovery Vertical distribution Wastewater |
title | Planting Anion Channels in a Negatively Charged Polyamide Layer for Highly Selective Nanofiltration Separation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Planting%20Anion%20Channels%20in%20a%20Negatively%20Charged%20Polyamide%20Layer%20for%20Highly%20Selective%20Nanofiltration%20Separation&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Ren,%20Yuling&rft.date=2022-12-20&rft.volume=56&rft.issue=24&rft.spage=18018&rft.epage=18029&rft.pages=18018-18029&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.2c06582&rft_dat=%3Cproquest_cross%3E2742658438%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760225165&rft_id=info:pmid/36445263&rfr_iscdi=true |