Planting Anion Channels in a Negatively Charged Polyamide Layer for Highly Selective Nanofiltration Separation

A nanofiltration (NF) membrane with high salt permeation and high retention of small organics is appealing for the treatment of high-salinity organic wastewater. However, the conventional negatively charged NF membranes commonly show high retention of divalent anions (e.g., SO4 2–), and the reported...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2022-12, Vol.56 (24), p.18018-18029
Hauptverfasser: Ren, Yuling, Qi, Pengfei, Wan, Yinhua, Chen, Chulong, Chen, Xiangrong, Feng, Shichao, Luo, Jianquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18029
container_issue 24
container_start_page 18018
container_title Environmental science & technology
container_volume 56
creator Ren, Yuling
Qi, Pengfei
Wan, Yinhua
Chen, Chulong
Chen, Xiangrong
Feng, Shichao
Luo, Jianquan
description A nanofiltration (NF) membrane with high salt permeation and high retention of small organics is appealing for the treatment of high-salinity organic wastewater. However, the conventional negatively charged NF membranes commonly show high retention of divalent anions (e.g., SO4 2–), and the reported positively charged NF membranes normally suffer super low selectivity for small organics/Na2SO4 and high fouling potential. In this work, we propose a novel “etching–swelling–planting” strategy assisted by interfacial polymerization and mussel-inspired catecholamine chemistry to prepare a mix-charged NF membrane. By X-ray photoelectron spectroscopy depth profiling and pore size distribution analysis, it was found that such a strategy could not only deepen the positive charge distribution but also narrow the pore size. Molecular dynamics confirm that the planted polyethyleneimine chains play an important role to relay SO4 2– ions to facilitate their transport across the membrane, thus reversing the retention of Na2SO4 and glucose (43 vs 71%). Meanwhile, due to the high surface hydrophilicity and smoothness as well as the preservation of abundant negatively charged groups (−OH and −COOH) inside the separation layer, the obtained membrane exhibited excellent antifouling performance, even for the coking wastewater. This study advances the importance of vertical charge distribution of NF membranes in separation selectivity and antifouling performance.
doi_str_mv 10.1021/acs.est.2c06582
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2742658438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2742658438</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-6b36970ca7b143c52976316d5c2f1adc027af598bc633b68d405d02cf3c78d9e3</originalsourceid><addsrcrecordid>eNp1kc9LwzAcxYMobk7P3iTgRZBu-dGk7XEMdcKYgyl4K2madhltOpNW2H9vyuYOgqd8IZ_3vsl7ANxiNMaI4ImQbqxcOyYScRaTMzDEjKCAxQyfgyFCmAYJ5Z8DcOXcFiFEKIovwYDyMGSE0yEwq0qYVpsSTo1uDJxthDGqclAbKOBSlaLV36ra9xe2VDlcNdVe1DpXcCH2ysKisXCuy41H1qpSssfhUpim0FVrvdqbrtVOHMZrcFGIyqmb4zkCH89P77N5sHh7eZ1NF4GgHLcBzyhPIiRFlOGQSkaSiFPMcyZJgUUuEYlEwZI4k5zSjMd5iFiOiCyojOI8UXQEHg6-O9t8dT6htNZOqsp_VjWdS0kUEh9YSGOP3v9Bt01njX-dpzgihGHOPDU5UNI2zllVpDura2H3KUZpX0Xqq0h79bEKr7g7-nZZrfIT_5u9Bx4PQK887fzP7ge3MpRa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760225165</pqid></control><display><type>article</type><title>Planting Anion Channels in a Negatively Charged Polyamide Layer for Highly Selective Nanofiltration Separation</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Ren, Yuling ; Qi, Pengfei ; Wan, Yinhua ; Chen, Chulong ; Chen, Xiangrong ; Feng, Shichao ; Luo, Jianquan</creator><creatorcontrib>Ren, Yuling ; Qi, Pengfei ; Wan, Yinhua ; Chen, Chulong ; Chen, Xiangrong ; Feng, Shichao ; Luo, Jianquan</creatorcontrib><description>A nanofiltration (NF) membrane with high salt permeation and high retention of small organics is appealing for the treatment of high-salinity organic wastewater. However, the conventional negatively charged NF membranes commonly show high retention of divalent anions (e.g., SO4 2–), and the reported positively charged NF membranes normally suffer super low selectivity for small organics/Na2SO4 and high fouling potential. In this work, we propose a novel “etching–swelling–planting” strategy assisted by interfacial polymerization and mussel-inspired catecholamine chemistry to prepare a mix-charged NF membrane. By X-ray photoelectron spectroscopy depth profiling and pore size distribution analysis, it was found that such a strategy could not only deepen the positive charge distribution but also narrow the pore size. Molecular dynamics confirm that the planted polyethyleneimine chains play an important role to relay SO4 2– ions to facilitate their transport across the membrane, thus reversing the retention of Na2SO4 and glucose (43 vs 71%). Meanwhile, due to the high surface hydrophilicity and smoothness as well as the preservation of abundant negatively charged groups (−OH and −COOH) inside the separation layer, the obtained membrane exhibited excellent antifouling performance, even for the coking wastewater. This study advances the importance of vertical charge distribution of NF membranes in separation selectivity and antifouling performance.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.2c06582</identifier><identifier>PMID: 36445263</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anion channels ; Anions ; Antifouling ; Antifouling substances ; Catecholamine ; Catecholamines ; Charge distribution ; Coking ; Depth profiling ; Etching ; Ion channels ; Ions ; Membranes ; Membranes, Artificial ; Molecular dynamics ; Nanofiltration ; Nanotechnology ; Nylons - chemistry ; Organic wastes ; Photoelectron spectroscopy ; Photoelectrons ; Planting ; Polyamide resins ; Polyamides ; Polyethyleneimine ; Pore size ; Pore size distribution ; Retention ; Selectivity ; Separation ; Size distribution ; Smoothness ; Sodium sulfate ; Treatment and Resource Recovery ; Vertical distribution ; Wastewater</subject><ispartof>Environmental science &amp; technology, 2022-12, Vol.56 (24), p.18018-18029</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 20, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-6b36970ca7b143c52976316d5c2f1adc027af598bc633b68d405d02cf3c78d9e3</citedby><cites>FETCH-LOGICAL-a361t-6b36970ca7b143c52976316d5c2f1adc027af598bc633b68d405d02cf3c78d9e3</cites><orcidid>0000-0002-5265-4941 ; 0000-0002-9949-7779</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.2c06582$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.2c06582$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36445263$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ren, Yuling</creatorcontrib><creatorcontrib>Qi, Pengfei</creatorcontrib><creatorcontrib>Wan, Yinhua</creatorcontrib><creatorcontrib>Chen, Chulong</creatorcontrib><creatorcontrib>Chen, Xiangrong</creatorcontrib><creatorcontrib>Feng, Shichao</creatorcontrib><creatorcontrib>Luo, Jianquan</creatorcontrib><title>Planting Anion Channels in a Negatively Charged Polyamide Layer for Highly Selective Nanofiltration Separation</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>A nanofiltration (NF) membrane with high salt permeation and high retention of small organics is appealing for the treatment of high-salinity organic wastewater. However, the conventional negatively charged NF membranes commonly show high retention of divalent anions (e.g., SO4 2–), and the reported positively charged NF membranes normally suffer super low selectivity for small organics/Na2SO4 and high fouling potential. In this work, we propose a novel “etching–swelling–planting” strategy assisted by interfacial polymerization and mussel-inspired catecholamine chemistry to prepare a mix-charged NF membrane. By X-ray photoelectron spectroscopy depth profiling and pore size distribution analysis, it was found that such a strategy could not only deepen the positive charge distribution but also narrow the pore size. Molecular dynamics confirm that the planted polyethyleneimine chains play an important role to relay SO4 2– ions to facilitate their transport across the membrane, thus reversing the retention of Na2SO4 and glucose (43 vs 71%). Meanwhile, due to the high surface hydrophilicity and smoothness as well as the preservation of abundant negatively charged groups (−OH and −COOH) inside the separation layer, the obtained membrane exhibited excellent antifouling performance, even for the coking wastewater. This study advances the importance of vertical charge distribution of NF membranes in separation selectivity and antifouling performance.</description><subject>Anion channels</subject><subject>Anions</subject><subject>Antifouling</subject><subject>Antifouling substances</subject><subject>Catecholamine</subject><subject>Catecholamines</subject><subject>Charge distribution</subject><subject>Coking</subject><subject>Depth profiling</subject><subject>Etching</subject><subject>Ion channels</subject><subject>Ions</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Molecular dynamics</subject><subject>Nanofiltration</subject><subject>Nanotechnology</subject><subject>Nylons - chemistry</subject><subject>Organic wastes</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Planting</subject><subject>Polyamide resins</subject><subject>Polyamides</subject><subject>Polyethyleneimine</subject><subject>Pore size</subject><subject>Pore size distribution</subject><subject>Retention</subject><subject>Selectivity</subject><subject>Separation</subject><subject>Size distribution</subject><subject>Smoothness</subject><subject>Sodium sulfate</subject><subject>Treatment and Resource Recovery</subject><subject>Vertical distribution</subject><subject>Wastewater</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9LwzAcxYMobk7P3iTgRZBu-dGk7XEMdcKYgyl4K2madhltOpNW2H9vyuYOgqd8IZ_3vsl7ANxiNMaI4ImQbqxcOyYScRaTMzDEjKCAxQyfgyFCmAYJ5Z8DcOXcFiFEKIovwYDyMGSE0yEwq0qYVpsSTo1uDJxthDGqclAbKOBSlaLV36ra9xe2VDlcNdVe1DpXcCH2ysKisXCuy41H1qpSssfhUpim0FVrvdqbrtVOHMZrcFGIyqmb4zkCH89P77N5sHh7eZ1NF4GgHLcBzyhPIiRFlOGQSkaSiFPMcyZJgUUuEYlEwZI4k5zSjMd5iFiOiCyojOI8UXQEHg6-O9t8dT6htNZOqsp_VjWdS0kUEh9YSGOP3v9Bt01njX-dpzgihGHOPDU5UNI2zllVpDura2H3KUZpX0Xqq0h79bEKr7g7-nZZrfIT_5u9Bx4PQK887fzP7ge3MpRa</recordid><startdate>20221220</startdate><enddate>20221220</enddate><creator>Ren, Yuling</creator><creator>Qi, Pengfei</creator><creator>Wan, Yinhua</creator><creator>Chen, Chulong</creator><creator>Chen, Xiangrong</creator><creator>Feng, Shichao</creator><creator>Luo, Jianquan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5265-4941</orcidid><orcidid>https://orcid.org/0000-0002-9949-7779</orcidid></search><sort><creationdate>20221220</creationdate><title>Planting Anion Channels in a Negatively Charged Polyamide Layer for Highly Selective Nanofiltration Separation</title><author>Ren, Yuling ; Qi, Pengfei ; Wan, Yinhua ; Chen, Chulong ; Chen, Xiangrong ; Feng, Shichao ; Luo, Jianquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-6b36970ca7b143c52976316d5c2f1adc027af598bc633b68d405d02cf3c78d9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anion channels</topic><topic>Anions</topic><topic>Antifouling</topic><topic>Antifouling substances</topic><topic>Catecholamine</topic><topic>Catecholamines</topic><topic>Charge distribution</topic><topic>Coking</topic><topic>Depth profiling</topic><topic>Etching</topic><topic>Ion channels</topic><topic>Ions</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Molecular dynamics</topic><topic>Nanofiltration</topic><topic>Nanotechnology</topic><topic>Nylons - chemistry</topic><topic>Organic wastes</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Planting</topic><topic>Polyamide resins</topic><topic>Polyamides</topic><topic>Polyethyleneimine</topic><topic>Pore size</topic><topic>Pore size distribution</topic><topic>Retention</topic><topic>Selectivity</topic><topic>Separation</topic><topic>Size distribution</topic><topic>Smoothness</topic><topic>Sodium sulfate</topic><topic>Treatment and Resource Recovery</topic><topic>Vertical distribution</topic><topic>Wastewater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Yuling</creatorcontrib><creatorcontrib>Qi, Pengfei</creatorcontrib><creatorcontrib>Wan, Yinhua</creatorcontrib><creatorcontrib>Chen, Chulong</creatorcontrib><creatorcontrib>Chen, Xiangrong</creatorcontrib><creatorcontrib>Feng, Shichao</creatorcontrib><creatorcontrib>Luo, Jianquan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Yuling</au><au>Qi, Pengfei</au><au>Wan, Yinhua</au><au>Chen, Chulong</au><au>Chen, Xiangrong</au><au>Feng, Shichao</au><au>Luo, Jianquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Planting Anion Channels in a Negatively Charged Polyamide Layer for Highly Selective Nanofiltration Separation</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2022-12-20</date><risdate>2022</risdate><volume>56</volume><issue>24</issue><spage>18018</spage><epage>18029</epage><pages>18018-18029</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>A nanofiltration (NF) membrane with high salt permeation and high retention of small organics is appealing for the treatment of high-salinity organic wastewater. However, the conventional negatively charged NF membranes commonly show high retention of divalent anions (e.g., SO4 2–), and the reported positively charged NF membranes normally suffer super low selectivity for small organics/Na2SO4 and high fouling potential. In this work, we propose a novel “etching–swelling–planting” strategy assisted by interfacial polymerization and mussel-inspired catecholamine chemistry to prepare a mix-charged NF membrane. By X-ray photoelectron spectroscopy depth profiling and pore size distribution analysis, it was found that such a strategy could not only deepen the positive charge distribution but also narrow the pore size. Molecular dynamics confirm that the planted polyethyleneimine chains play an important role to relay SO4 2– ions to facilitate their transport across the membrane, thus reversing the retention of Na2SO4 and glucose (43 vs 71%). Meanwhile, due to the high surface hydrophilicity and smoothness as well as the preservation of abundant negatively charged groups (−OH and −COOH) inside the separation layer, the obtained membrane exhibited excellent antifouling performance, even for the coking wastewater. This study advances the importance of vertical charge distribution of NF membranes in separation selectivity and antifouling performance.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36445263</pmid><doi>10.1021/acs.est.2c06582</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5265-4941</orcidid><orcidid>https://orcid.org/0000-0002-9949-7779</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2022-12, Vol.56 (24), p.18018-18029
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_2742658438
source MEDLINE; American Chemical Society Journals
subjects Anion channels
Anions
Antifouling
Antifouling substances
Catecholamine
Catecholamines
Charge distribution
Coking
Depth profiling
Etching
Ion channels
Ions
Membranes
Membranes, Artificial
Molecular dynamics
Nanofiltration
Nanotechnology
Nylons - chemistry
Organic wastes
Photoelectron spectroscopy
Photoelectrons
Planting
Polyamide resins
Polyamides
Polyethyleneimine
Pore size
Pore size distribution
Retention
Selectivity
Separation
Size distribution
Smoothness
Sodium sulfate
Treatment and Resource Recovery
Vertical distribution
Wastewater
title Planting Anion Channels in a Negatively Charged Polyamide Layer for Highly Selective Nanofiltration Separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Planting%20Anion%20Channels%20in%20a%20Negatively%20Charged%20Polyamide%20Layer%20for%20Highly%20Selective%20Nanofiltration%20Separation&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Ren,%20Yuling&rft.date=2022-12-20&rft.volume=56&rft.issue=24&rft.spage=18018&rft.epage=18029&rft.pages=18018-18029&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.2c06582&rft_dat=%3Cproquest_cross%3E2742658438%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760225165&rft_id=info:pmid/36445263&rfr_iscdi=true