Design rules for 2D field mediated assembly of different shaped colloids into diverse microstructures
Assembling different shaped particles into ordered microstructures is an open challenge in creating multifunctional particle-based materials and devices. Here, we report the two-dimensional (2D) AC electric field mediated assembly of different shaped colloidal particles into amorphous, liquid crysta...
Gespeichert in:
Veröffentlicht in: | Soft matter 2022-12, Vol.18 (48), p.9273-9282 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9282 |
---|---|
container_issue | 48 |
container_start_page | 9273 |
container_title | Soft matter |
container_volume | 18 |
creator | Hendley, Rachel S Zhang, Lechuan Bevan, Michael A |
description | Assembling different shaped particles into ordered microstructures is an open challenge in creating multifunctional particle-based materials and devices. Here, we report the two-dimensional (2D) AC electric field mediated assembly of different shaped colloidal particles into amorphous, liquid crystalline, and crystalline microstructures. Particle shapes investigated include disks, ellipses, squares, and rectangles, which show how systematic variations in anisotropy and corner curvature determine the number and type of resulting microstructures. AC electric fields induce dipolar interactions to control particle positional and orientational order. Microstructural states are determined
via
particle tracking to compute order parameters, which agree with computer simulations and show how particle packing and dipolar interactions together produce each structure. Results demonstrate how choice of particle shape and field conditions enable kinetically viable routes to assemble nematic, tetratic, and smectic liquid crystal structures as well as crystals with stretched 4- and 6-fold symmetry. Results show it is possible to assemble all corresponding hard particle phases, but also show how dipolar interactions influence and produce additional microstructures. Our findings provide design rules for the assembly of diverse microstructures of different shaped particles in AC electric fields, which could enable scalable and reconfigurable particle-based materials, displays, and printing technologies.
2D assembly of circular, square, elliptical, and rectangular prisms yields liquid, liquid crystalline, and crystalline states. Particle shape and field dependent states quantified using order parameters reveal design rules for 2D microstructures. |
doi_str_mv | 10.1039/d2sm01078j |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2742658083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2742658083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-db4e013dbbf88def7f4bf6d7d78854f40407bd9d70b831b926351cb6839dcb9a3</originalsourceid><addsrcrecordid>eNpd0U1LHTEUBuAgFr837isBN1K4NZlkJpmlePuJpQstuBsmyUnNJTO55swU_PeNvXoLrhJ4Hw45bwg55ewjZ6K9dBUOjDOlVzvkgCspF42Wend7F_f75BBxxZjQkjd7ZF80UtaqkgcEloDh90jzHAGpT5lWS-oDREcHcKGfwNEeEQYTn2jy1AXvIcM4UXzo1yW0KcYUHNIwTqnEfyAj0CHYnHDKs53mDHhM3vk-Ipy8nEfk1-dPd9dfFzc_v3y7vrpZWKH0tHBGAuPCGeO1duCVl8Y3TjmldS29ZJIp41qnmNGCm7ZqRM2tKRu2zpq2F0fkYjN3ndPjDDh1Q0ALMfYjpBm7SsmqqTXTotDzN3SV5jyW1xVVi7ZtG8GK-rBRz-tgBt-tcxj6_NRx1j2X3y2r2x__yv9e8NnLyNmU8rb0te0C3m9ARrtN__-e-AvCRIpM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753999630</pqid></control><display><type>article</type><title>Design rules for 2D field mediated assembly of different shaped colloids into diverse microstructures</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Hendley, Rachel S ; Zhang, Lechuan ; Bevan, Michael A</creator><creatorcontrib>Hendley, Rachel S ; Zhang, Lechuan ; Bevan, Michael A</creatorcontrib><description>Assembling different shaped particles into ordered microstructures is an open challenge in creating multifunctional particle-based materials and devices. Here, we report the two-dimensional (2D) AC electric field mediated assembly of different shaped colloidal particles into amorphous, liquid crystalline, and crystalline microstructures. Particle shapes investigated include disks, ellipses, squares, and rectangles, which show how systematic variations in anisotropy and corner curvature determine the number and type of resulting microstructures. AC electric fields induce dipolar interactions to control particle positional and orientational order. Microstructural states are determined
via
particle tracking to compute order parameters, which agree with computer simulations and show how particle packing and dipolar interactions together produce each structure. Results demonstrate how choice of particle shape and field conditions enable kinetically viable routes to assemble nematic, tetratic, and smectic liquid crystal structures as well as crystals with stretched 4- and 6-fold symmetry. Results show it is possible to assemble all corresponding hard particle phases, but also show how dipolar interactions influence and produce additional microstructures. Our findings provide design rules for the assembly of diverse microstructures of different shaped particles in AC electric fields, which could enable scalable and reconfigurable particle-based materials, displays, and printing technologies.
2D assembly of circular, square, elliptical, and rectangular prisms yields liquid, liquid crystalline, and crystalline states. Particle shape and field dependent states quantified using order parameters reveal design rules for 2D microstructures.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d2sm01078j</identifier><identifier>PMID: 36445724</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anisotropy ; Assembling ; Assembly ; Colloids ; Crystals ; Disks ; Electric fields ; Liquid crystals ; Mathematical analysis ; Mathematical models ; Microstructure ; Order parameters ; Particle shape ; Particle tracking ; Rectangles ; Smectic liquid crystals</subject><ispartof>Soft matter, 2022-12, Vol.18 (48), p.9273-9282</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-db4e013dbbf88def7f4bf6d7d78854f40407bd9d70b831b926351cb6839dcb9a3</citedby><cites>FETCH-LOGICAL-c378t-db4e013dbbf88def7f4bf6d7d78854f40407bd9d70b831b926351cb6839dcb9a3</cites><orcidid>0000-0002-9118-4890 ; 0000-0002-9368-4899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36445724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hendley, Rachel S</creatorcontrib><creatorcontrib>Zhang, Lechuan</creatorcontrib><creatorcontrib>Bevan, Michael A</creatorcontrib><title>Design rules for 2D field mediated assembly of different shaped colloids into diverse microstructures</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Assembling different shaped particles into ordered microstructures is an open challenge in creating multifunctional particle-based materials and devices. Here, we report the two-dimensional (2D) AC electric field mediated assembly of different shaped colloidal particles into amorphous, liquid crystalline, and crystalline microstructures. Particle shapes investigated include disks, ellipses, squares, and rectangles, which show how systematic variations in anisotropy and corner curvature determine the number and type of resulting microstructures. AC electric fields induce dipolar interactions to control particle positional and orientational order. Microstructural states are determined
via
particle tracking to compute order parameters, which agree with computer simulations and show how particle packing and dipolar interactions together produce each structure. Results demonstrate how choice of particle shape and field conditions enable kinetically viable routes to assemble nematic, tetratic, and smectic liquid crystal structures as well as crystals with stretched 4- and 6-fold symmetry. Results show it is possible to assemble all corresponding hard particle phases, but also show how dipolar interactions influence and produce additional microstructures. Our findings provide design rules for the assembly of diverse microstructures of different shaped particles in AC electric fields, which could enable scalable and reconfigurable particle-based materials, displays, and printing technologies.
2D assembly of circular, square, elliptical, and rectangular prisms yields liquid, liquid crystalline, and crystalline states. Particle shape and field dependent states quantified using order parameters reveal design rules for 2D microstructures.</description><subject>Anisotropy</subject><subject>Assembling</subject><subject>Assembly</subject><subject>Colloids</subject><subject>Crystals</subject><subject>Disks</subject><subject>Electric fields</subject><subject>Liquid crystals</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Order parameters</subject><subject>Particle shape</subject><subject>Particle tracking</subject><subject>Rectangles</subject><subject>Smectic liquid crystals</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0U1LHTEUBuAgFr837isBN1K4NZlkJpmlePuJpQstuBsmyUnNJTO55swU_PeNvXoLrhJ4Hw45bwg55ewjZ6K9dBUOjDOlVzvkgCspF42Wend7F_f75BBxxZjQkjd7ZF80UtaqkgcEloDh90jzHAGpT5lWS-oDREcHcKGfwNEeEQYTn2jy1AXvIcM4UXzo1yW0KcYUHNIwTqnEfyAj0CHYnHDKs53mDHhM3vk-Ipy8nEfk1-dPd9dfFzc_v3y7vrpZWKH0tHBGAuPCGeO1duCVl8Y3TjmldS29ZJIp41qnmNGCm7ZqRM2tKRu2zpq2F0fkYjN3ndPjDDh1Q0ALMfYjpBm7SsmqqTXTotDzN3SV5jyW1xVVi7ZtG8GK-rBRz-tgBt-tcxj6_NRx1j2X3y2r2x__yv9e8NnLyNmU8rb0te0C3m9ARrtN__-e-AvCRIpM</recordid><startdate>20221214</startdate><enddate>20221214</enddate><creator>Hendley, Rachel S</creator><creator>Zhang, Lechuan</creator><creator>Bevan, Michael A</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9118-4890</orcidid><orcidid>https://orcid.org/0000-0002-9368-4899</orcidid></search><sort><creationdate>20221214</creationdate><title>Design rules for 2D field mediated assembly of different shaped colloids into diverse microstructures</title><author>Hendley, Rachel S ; Zhang, Lechuan ; Bevan, Michael A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-db4e013dbbf88def7f4bf6d7d78854f40407bd9d70b831b926351cb6839dcb9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anisotropy</topic><topic>Assembling</topic><topic>Assembly</topic><topic>Colloids</topic><topic>Crystals</topic><topic>Disks</topic><topic>Electric fields</topic><topic>Liquid crystals</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Order parameters</topic><topic>Particle shape</topic><topic>Particle tracking</topic><topic>Rectangles</topic><topic>Smectic liquid crystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hendley, Rachel S</creatorcontrib><creatorcontrib>Zhang, Lechuan</creatorcontrib><creatorcontrib>Bevan, Michael A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hendley, Rachel S</au><au>Zhang, Lechuan</au><au>Bevan, Michael A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design rules for 2D field mediated assembly of different shaped colloids into diverse microstructures</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2022-12-14</date><risdate>2022</risdate><volume>18</volume><issue>48</issue><spage>9273</spage><epage>9282</epage><pages>9273-9282</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Assembling different shaped particles into ordered microstructures is an open challenge in creating multifunctional particle-based materials and devices. Here, we report the two-dimensional (2D) AC electric field mediated assembly of different shaped colloidal particles into amorphous, liquid crystalline, and crystalline microstructures. Particle shapes investigated include disks, ellipses, squares, and rectangles, which show how systematic variations in anisotropy and corner curvature determine the number and type of resulting microstructures. AC electric fields induce dipolar interactions to control particle positional and orientational order. Microstructural states are determined
via
particle tracking to compute order parameters, which agree with computer simulations and show how particle packing and dipolar interactions together produce each structure. Results demonstrate how choice of particle shape and field conditions enable kinetically viable routes to assemble nematic, tetratic, and smectic liquid crystal structures as well as crystals with stretched 4- and 6-fold symmetry. Results show it is possible to assemble all corresponding hard particle phases, but also show how dipolar interactions influence and produce additional microstructures. Our findings provide design rules for the assembly of diverse microstructures of different shaped particles in AC electric fields, which could enable scalable and reconfigurable particle-based materials, displays, and printing technologies.
2D assembly of circular, square, elliptical, and rectangular prisms yields liquid, liquid crystalline, and crystalline states. Particle shape and field dependent states quantified using order parameters reveal design rules for 2D microstructures.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36445724</pmid><doi>10.1039/d2sm01078j</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9118-4890</orcidid><orcidid>https://orcid.org/0000-0002-9368-4899</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2022-12, Vol.18 (48), p.9273-9282 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_proquest_miscellaneous_2742658083 |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Anisotropy Assembling Assembly Colloids Crystals Disks Electric fields Liquid crystals Mathematical analysis Mathematical models Microstructure Order parameters Particle shape Particle tracking Rectangles Smectic liquid crystals |
title | Design rules for 2D field mediated assembly of different shaped colloids into diverse microstructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T16%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20rules%20for%202D%20field%20mediated%20assembly%20of%20different%20shaped%20colloids%20into%20diverse%20microstructures&rft.jtitle=Soft%20matter&rft.au=Hendley,%20Rachel%20S&rft.date=2022-12-14&rft.volume=18&rft.issue=48&rft.spage=9273&rft.epage=9282&rft.pages=9273-9282&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d2sm01078j&rft_dat=%3Cproquest_pubme%3E2742658083%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753999630&rft_id=info:pmid/36445724&rfr_iscdi=true |