Design rules for 2D field mediated assembly of different shaped colloids into diverse microstructures

Assembling different shaped particles into ordered microstructures is an open challenge in creating multifunctional particle-based materials and devices. Here, we report the two-dimensional (2D) AC electric field mediated assembly of different shaped colloidal particles into amorphous, liquid crysta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2022-12, Vol.18 (48), p.9273-9282
Hauptverfasser: Hendley, Rachel S, Zhang, Lechuan, Bevan, Michael A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9282
container_issue 48
container_start_page 9273
container_title Soft matter
container_volume 18
creator Hendley, Rachel S
Zhang, Lechuan
Bevan, Michael A
description Assembling different shaped particles into ordered microstructures is an open challenge in creating multifunctional particle-based materials and devices. Here, we report the two-dimensional (2D) AC electric field mediated assembly of different shaped colloidal particles into amorphous, liquid crystalline, and crystalline microstructures. Particle shapes investigated include disks, ellipses, squares, and rectangles, which show how systematic variations in anisotropy and corner curvature determine the number and type of resulting microstructures. AC electric fields induce dipolar interactions to control particle positional and orientational order. Microstructural states are determined via particle tracking to compute order parameters, which agree with computer simulations and show how particle packing and dipolar interactions together produce each structure. Results demonstrate how choice of particle shape and field conditions enable kinetically viable routes to assemble nematic, tetratic, and smectic liquid crystal structures as well as crystals with stretched 4- and 6-fold symmetry. Results show it is possible to assemble all corresponding hard particle phases, but also show how dipolar interactions influence and produce additional microstructures. Our findings provide design rules for the assembly of diverse microstructures of different shaped particles in AC electric fields, which could enable scalable and reconfigurable particle-based materials, displays, and printing technologies. 2D assembly of circular, square, elliptical, and rectangular prisms yields liquid, liquid crystalline, and crystalline states. Particle shape and field dependent states quantified using order parameters reveal design rules for 2D microstructures.
doi_str_mv 10.1039/d2sm01078j
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2742658083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2742658083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-db4e013dbbf88def7f4bf6d7d78854f40407bd9d70b831b926351cb6839dcb9a3</originalsourceid><addsrcrecordid>eNpd0U1LHTEUBuAgFr837isBN1K4NZlkJpmlePuJpQstuBsmyUnNJTO55swU_PeNvXoLrhJ4Hw45bwg55ewjZ6K9dBUOjDOlVzvkgCspF42Wend7F_f75BBxxZjQkjd7ZF80UtaqkgcEloDh90jzHAGpT5lWS-oDREcHcKGfwNEeEQYTn2jy1AXvIcM4UXzo1yW0KcYUHNIwTqnEfyAj0CHYnHDKs53mDHhM3vk-Ipy8nEfk1-dPd9dfFzc_v3y7vrpZWKH0tHBGAuPCGeO1duCVl8Y3TjmldS29ZJIp41qnmNGCm7ZqRM2tKRu2zpq2F0fkYjN3ndPjDDh1Q0ALMfYjpBm7SsmqqTXTotDzN3SV5jyW1xVVi7ZtG8GK-rBRz-tgBt-tcxj6_NRx1j2X3y2r2x__yv9e8NnLyNmU8rb0te0C3m9ARrtN__-e-AvCRIpM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753999630</pqid></control><display><type>article</type><title>Design rules for 2D field mediated assembly of different shaped colloids into diverse microstructures</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Hendley, Rachel S ; Zhang, Lechuan ; Bevan, Michael A</creator><creatorcontrib>Hendley, Rachel S ; Zhang, Lechuan ; Bevan, Michael A</creatorcontrib><description>Assembling different shaped particles into ordered microstructures is an open challenge in creating multifunctional particle-based materials and devices. Here, we report the two-dimensional (2D) AC electric field mediated assembly of different shaped colloidal particles into amorphous, liquid crystalline, and crystalline microstructures. Particle shapes investigated include disks, ellipses, squares, and rectangles, which show how systematic variations in anisotropy and corner curvature determine the number and type of resulting microstructures. AC electric fields induce dipolar interactions to control particle positional and orientational order. Microstructural states are determined via particle tracking to compute order parameters, which agree with computer simulations and show how particle packing and dipolar interactions together produce each structure. Results demonstrate how choice of particle shape and field conditions enable kinetically viable routes to assemble nematic, tetratic, and smectic liquid crystal structures as well as crystals with stretched 4- and 6-fold symmetry. Results show it is possible to assemble all corresponding hard particle phases, but also show how dipolar interactions influence and produce additional microstructures. Our findings provide design rules for the assembly of diverse microstructures of different shaped particles in AC electric fields, which could enable scalable and reconfigurable particle-based materials, displays, and printing technologies. 2D assembly of circular, square, elliptical, and rectangular prisms yields liquid, liquid crystalline, and crystalline states. Particle shape and field dependent states quantified using order parameters reveal design rules for 2D microstructures.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d2sm01078j</identifier><identifier>PMID: 36445724</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anisotropy ; Assembling ; Assembly ; Colloids ; Crystals ; Disks ; Electric fields ; Liquid crystals ; Mathematical analysis ; Mathematical models ; Microstructure ; Order parameters ; Particle shape ; Particle tracking ; Rectangles ; Smectic liquid crystals</subject><ispartof>Soft matter, 2022-12, Vol.18 (48), p.9273-9282</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-db4e013dbbf88def7f4bf6d7d78854f40407bd9d70b831b926351cb6839dcb9a3</citedby><cites>FETCH-LOGICAL-c378t-db4e013dbbf88def7f4bf6d7d78854f40407bd9d70b831b926351cb6839dcb9a3</cites><orcidid>0000-0002-9118-4890 ; 0000-0002-9368-4899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36445724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hendley, Rachel S</creatorcontrib><creatorcontrib>Zhang, Lechuan</creatorcontrib><creatorcontrib>Bevan, Michael A</creatorcontrib><title>Design rules for 2D field mediated assembly of different shaped colloids into diverse microstructures</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Assembling different shaped particles into ordered microstructures is an open challenge in creating multifunctional particle-based materials and devices. Here, we report the two-dimensional (2D) AC electric field mediated assembly of different shaped colloidal particles into amorphous, liquid crystalline, and crystalline microstructures. Particle shapes investigated include disks, ellipses, squares, and rectangles, which show how systematic variations in anisotropy and corner curvature determine the number and type of resulting microstructures. AC electric fields induce dipolar interactions to control particle positional and orientational order. Microstructural states are determined via particle tracking to compute order parameters, which agree with computer simulations and show how particle packing and dipolar interactions together produce each structure. Results demonstrate how choice of particle shape and field conditions enable kinetically viable routes to assemble nematic, tetratic, and smectic liquid crystal structures as well as crystals with stretched 4- and 6-fold symmetry. Results show it is possible to assemble all corresponding hard particle phases, but also show how dipolar interactions influence and produce additional microstructures. Our findings provide design rules for the assembly of diverse microstructures of different shaped particles in AC electric fields, which could enable scalable and reconfigurable particle-based materials, displays, and printing technologies. 2D assembly of circular, square, elliptical, and rectangular prisms yields liquid, liquid crystalline, and crystalline states. Particle shape and field dependent states quantified using order parameters reveal design rules for 2D microstructures.</description><subject>Anisotropy</subject><subject>Assembling</subject><subject>Assembly</subject><subject>Colloids</subject><subject>Crystals</subject><subject>Disks</subject><subject>Electric fields</subject><subject>Liquid crystals</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Order parameters</subject><subject>Particle shape</subject><subject>Particle tracking</subject><subject>Rectangles</subject><subject>Smectic liquid crystals</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0U1LHTEUBuAgFr837isBN1K4NZlkJpmlePuJpQstuBsmyUnNJTO55swU_PeNvXoLrhJ4Hw45bwg55ewjZ6K9dBUOjDOlVzvkgCspF42Wend7F_f75BBxxZjQkjd7ZF80UtaqkgcEloDh90jzHAGpT5lWS-oDREcHcKGfwNEeEQYTn2jy1AXvIcM4UXzo1yW0KcYUHNIwTqnEfyAj0CHYnHDKs53mDHhM3vk-Ipy8nEfk1-dPd9dfFzc_v3y7vrpZWKH0tHBGAuPCGeO1duCVl8Y3TjmldS29ZJIp41qnmNGCm7ZqRM2tKRu2zpq2F0fkYjN3ndPjDDh1Q0ALMfYjpBm7SsmqqTXTotDzN3SV5jyW1xVVi7ZtG8GK-rBRz-tgBt-tcxj6_NRx1j2X3y2r2x__yv9e8NnLyNmU8rb0te0C3m9ARrtN__-e-AvCRIpM</recordid><startdate>20221214</startdate><enddate>20221214</enddate><creator>Hendley, Rachel S</creator><creator>Zhang, Lechuan</creator><creator>Bevan, Michael A</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9118-4890</orcidid><orcidid>https://orcid.org/0000-0002-9368-4899</orcidid></search><sort><creationdate>20221214</creationdate><title>Design rules for 2D field mediated assembly of different shaped colloids into diverse microstructures</title><author>Hendley, Rachel S ; Zhang, Lechuan ; Bevan, Michael A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-db4e013dbbf88def7f4bf6d7d78854f40407bd9d70b831b926351cb6839dcb9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anisotropy</topic><topic>Assembling</topic><topic>Assembly</topic><topic>Colloids</topic><topic>Crystals</topic><topic>Disks</topic><topic>Electric fields</topic><topic>Liquid crystals</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Order parameters</topic><topic>Particle shape</topic><topic>Particle tracking</topic><topic>Rectangles</topic><topic>Smectic liquid crystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hendley, Rachel S</creatorcontrib><creatorcontrib>Zhang, Lechuan</creatorcontrib><creatorcontrib>Bevan, Michael A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hendley, Rachel S</au><au>Zhang, Lechuan</au><au>Bevan, Michael A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design rules for 2D field mediated assembly of different shaped colloids into diverse microstructures</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2022-12-14</date><risdate>2022</risdate><volume>18</volume><issue>48</issue><spage>9273</spage><epage>9282</epage><pages>9273-9282</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Assembling different shaped particles into ordered microstructures is an open challenge in creating multifunctional particle-based materials and devices. Here, we report the two-dimensional (2D) AC electric field mediated assembly of different shaped colloidal particles into amorphous, liquid crystalline, and crystalline microstructures. Particle shapes investigated include disks, ellipses, squares, and rectangles, which show how systematic variations in anisotropy and corner curvature determine the number and type of resulting microstructures. AC electric fields induce dipolar interactions to control particle positional and orientational order. Microstructural states are determined via particle tracking to compute order parameters, which agree with computer simulations and show how particle packing and dipolar interactions together produce each structure. Results demonstrate how choice of particle shape and field conditions enable kinetically viable routes to assemble nematic, tetratic, and smectic liquid crystal structures as well as crystals with stretched 4- and 6-fold symmetry. Results show it is possible to assemble all corresponding hard particle phases, but also show how dipolar interactions influence and produce additional microstructures. Our findings provide design rules for the assembly of diverse microstructures of different shaped particles in AC electric fields, which could enable scalable and reconfigurable particle-based materials, displays, and printing technologies. 2D assembly of circular, square, elliptical, and rectangular prisms yields liquid, liquid crystalline, and crystalline states. Particle shape and field dependent states quantified using order parameters reveal design rules for 2D microstructures.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36445724</pmid><doi>10.1039/d2sm01078j</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9118-4890</orcidid><orcidid>https://orcid.org/0000-0002-9368-4899</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2022-12, Vol.18 (48), p.9273-9282
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_miscellaneous_2742658083
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Anisotropy
Assembling
Assembly
Colloids
Crystals
Disks
Electric fields
Liquid crystals
Mathematical analysis
Mathematical models
Microstructure
Order parameters
Particle shape
Particle tracking
Rectangles
Smectic liquid crystals
title Design rules for 2D field mediated assembly of different shaped colloids into diverse microstructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T16%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20rules%20for%202D%20field%20mediated%20assembly%20of%20different%20shaped%20colloids%20into%20diverse%20microstructures&rft.jtitle=Soft%20matter&rft.au=Hendley,%20Rachel%20S&rft.date=2022-12-14&rft.volume=18&rft.issue=48&rft.spage=9273&rft.epage=9282&rft.pages=9273-9282&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d2sm01078j&rft_dat=%3Cproquest_pubme%3E2742658083%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753999630&rft_id=info:pmid/36445724&rfr_iscdi=true