Customizable Machine-Learning Models for Rapid Microplastic Identification Using Raman Microscopy

Raman spectroscopy is commonly used in microplastics identification, but equipment variations yield inconsistent data structures that disrupt the development of communal analytical tools. We report a strategy to overcome the issue using a database of high-resolution, full-window Raman spectra. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2022-12, Vol.94 (49), p.17011-17019
Hauptverfasser: Lei, Benjamin, Bissonnette, Justine R., Hogan, Úna E., Bec, Avery E., Feng, Xinyi, Smith, Rodney D. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17019
container_issue 49
container_start_page 17011
container_title Analytical chemistry (Washington)
container_volume 94
creator Lei, Benjamin
Bissonnette, Justine R.
Hogan, Úna E.
Bec, Avery E.
Feng, Xinyi
Smith, Rodney D. L.
description Raman spectroscopy is commonly used in microplastics identification, but equipment variations yield inconsistent data structures that disrupt the development of communal analytical tools. We report a strategy to overcome the issue using a database of high-resolution, full-window Raman spectra. This approach enables customizable analytical tools to be easily createda feature we demonstrate by creating machine-learning classification models using open-source random-forest, K-nearest neighbors, and multi-layer perceptron algorithms. These models yield >95% classification accuracy when trained on spectroscopic data with spectroscopic data downgraded to 1, 2, 4, or 8 cm–1 spacings in Raman shift. The accuracy can be maintained even in non-ideal conditions, such as with spectroscopic sampling rates of 1 kHz and when microplastic particles are outside the focal plane of the laser. This approach enables the creation of classification models that are robust and adaptable to varied spectrometer setups and experimental needs.
doi_str_mv 10.1021/acs.analchem.2c02451
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2742658049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2757124484</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-d92799b4dc3bbcd1c762d54cab33c71083bb85b7d05e0ed81e03b88c35195e3d3</originalsourceid><addsrcrecordid>eNp9kc1Lw0AQxRdRbK3-ByIBL15SZ7-SzVGKX9AiiJ7DZHerW5JszCaH-teb0NaDB08Dw--9Yd4j5JLCnAKjt6jDHGss9aet5kwDE5IekSmVDOJEKXZMpgDAY5YCTMhZCBsASoEmp2TCEyGk4tmU4KIPna_cNxaljVaoP11t46XFtnb1R7TyxpYhWvs2esXGmWjldOubEkPndPRsbN25tdPYOV9H72GUvGKF9Y4L2jfbc3KyxjLYi_2ckfeH-7fFU7x8eXxe3C1j5GnSxSZjaZYVwmheFNpQnSbMSKGx4FynFNSwVrJIDUgL1ihqgRdKaS5pJi03fEZudr5N6796G7q8ckHbssTa-j7kLBUskQpENqDXf9CN79shy5GSKWVCKDFQYkeNn4TWrvOmdRW225xCPlaQDxXkhwryfQWD7Gpv3heVNb-iQ-YDADtglP8e_tfzB8NlliI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757124484</pqid></control><display><type>article</type><title>Customizable Machine-Learning Models for Rapid Microplastic Identification Using Raman Microscopy</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Lei, Benjamin ; Bissonnette, Justine R. ; Hogan, Úna E. ; Bec, Avery E. ; Feng, Xinyi ; Smith, Rodney D. L.</creator><creatorcontrib>Lei, Benjamin ; Bissonnette, Justine R. ; Hogan, Úna E. ; Bec, Avery E. ; Feng, Xinyi ; Smith, Rodney D. L.</creatorcontrib><description>Raman spectroscopy is commonly used in microplastics identification, but equipment variations yield inconsistent data structures that disrupt the development of communal analytical tools. We report a strategy to overcome the issue using a database of high-resolution, full-window Raman spectra. This approach enables customizable analytical tools to be easily createda feature we demonstrate by creating machine-learning classification models using open-source random-forest, K-nearest neighbors, and multi-layer perceptron algorithms. These models yield &gt;95% classification accuracy when trained on spectroscopic data with spectroscopic data downgraded to 1, 2, 4, or 8 cm–1 spacings in Raman shift. The accuracy can be maintained even in non-ideal conditions, such as with spectroscopic sampling rates of 1 kHz and when microplastic particles are outside the focal plane of the laser. This approach enables the creation of classification models that are robust and adaptable to varied spectrometer setups and experimental needs.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.2c02451</identifier><identifier>PMID: 36445839</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Analytical chemistry ; Chemistry ; Classification ; Data structures ; Focal plane ; Learning algorithms ; Machine Learning ; Microplastics ; Microscopy ; Multilayer perceptrons ; Multilayers ; Neural Networks, Computer ; Plastics ; Raman spectra ; Raman spectroscopy ; Spectrum Analysis, Raman - methods</subject><ispartof>Analytical chemistry (Washington), 2022-12, Vol.94 (49), p.17011-17019</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 13, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-d92799b4dc3bbcd1c762d54cab33c71083bb85b7d05e0ed81e03b88c35195e3d3</citedby><cites>FETCH-LOGICAL-a376t-d92799b4dc3bbcd1c762d54cab33c71083bb85b7d05e0ed81e03b88c35195e3d3</cites><orcidid>0000-0003-1593-5602 ; 0000-0003-1209-9653</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.2c02451$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.2c02451$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36445839$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lei, Benjamin</creatorcontrib><creatorcontrib>Bissonnette, Justine R.</creatorcontrib><creatorcontrib>Hogan, Úna E.</creatorcontrib><creatorcontrib>Bec, Avery E.</creatorcontrib><creatorcontrib>Feng, Xinyi</creatorcontrib><creatorcontrib>Smith, Rodney D. L.</creatorcontrib><title>Customizable Machine-Learning Models for Rapid Microplastic Identification Using Raman Microscopy</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Raman spectroscopy is commonly used in microplastics identification, but equipment variations yield inconsistent data structures that disrupt the development of communal analytical tools. We report a strategy to overcome the issue using a database of high-resolution, full-window Raman spectra. This approach enables customizable analytical tools to be easily createda feature we demonstrate by creating machine-learning classification models using open-source random-forest, K-nearest neighbors, and multi-layer perceptron algorithms. These models yield &gt;95% classification accuracy when trained on spectroscopic data with spectroscopic data downgraded to 1, 2, 4, or 8 cm–1 spacings in Raman shift. The accuracy can be maintained even in non-ideal conditions, such as with spectroscopic sampling rates of 1 kHz and when microplastic particles are outside the focal plane of the laser. This approach enables the creation of classification models that are robust and adaptable to varied spectrometer setups and experimental needs.</description><subject>Algorithms</subject><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Classification</subject><subject>Data structures</subject><subject>Focal plane</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Microplastics</subject><subject>Microscopy</subject><subject>Multilayer perceptrons</subject><subject>Multilayers</subject><subject>Neural Networks, Computer</subject><subject>Plastics</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Spectrum Analysis, Raman - methods</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1Lw0AQxRdRbK3-ByIBL15SZ7-SzVGKX9AiiJ7DZHerW5JszCaH-teb0NaDB08Dw--9Yd4j5JLCnAKjt6jDHGss9aet5kwDE5IekSmVDOJEKXZMpgDAY5YCTMhZCBsASoEmp2TCEyGk4tmU4KIPna_cNxaljVaoP11t46XFtnb1R7TyxpYhWvs2esXGmWjldOubEkPndPRsbN25tdPYOV9H72GUvGKF9Y4L2jfbc3KyxjLYi_2ckfeH-7fFU7x8eXxe3C1j5GnSxSZjaZYVwmheFNpQnSbMSKGx4FynFNSwVrJIDUgL1ihqgRdKaS5pJi03fEZudr5N6796G7q8ckHbssTa-j7kLBUskQpENqDXf9CN79shy5GSKWVCKDFQYkeNn4TWrvOmdRW225xCPlaQDxXkhwryfQWD7Gpv3heVNb-iQ-YDADtglP8e_tfzB8NlliI</recordid><startdate>20221213</startdate><enddate>20221213</enddate><creator>Lei, Benjamin</creator><creator>Bissonnette, Justine R.</creator><creator>Hogan, Úna E.</creator><creator>Bec, Avery E.</creator><creator>Feng, Xinyi</creator><creator>Smith, Rodney D. L.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1593-5602</orcidid><orcidid>https://orcid.org/0000-0003-1209-9653</orcidid></search><sort><creationdate>20221213</creationdate><title>Customizable Machine-Learning Models for Rapid Microplastic Identification Using Raman Microscopy</title><author>Lei, Benjamin ; Bissonnette, Justine R. ; Hogan, Úna E. ; Bec, Avery E. ; Feng, Xinyi ; Smith, Rodney D. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-d92799b4dc3bbcd1c762d54cab33c71083bb85b7d05e0ed81e03b88c35195e3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Classification</topic><topic>Data structures</topic><topic>Focal plane</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Microplastics</topic><topic>Microscopy</topic><topic>Multilayer perceptrons</topic><topic>Multilayers</topic><topic>Neural Networks, Computer</topic><topic>Plastics</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Spectrum Analysis, Raman - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Benjamin</creatorcontrib><creatorcontrib>Bissonnette, Justine R.</creatorcontrib><creatorcontrib>Hogan, Úna E.</creatorcontrib><creatorcontrib>Bec, Avery E.</creatorcontrib><creatorcontrib>Feng, Xinyi</creatorcontrib><creatorcontrib>Smith, Rodney D. L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Benjamin</au><au>Bissonnette, Justine R.</au><au>Hogan, Úna E.</au><au>Bec, Avery E.</au><au>Feng, Xinyi</au><au>Smith, Rodney D. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Customizable Machine-Learning Models for Rapid Microplastic Identification Using Raman Microscopy</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2022-12-13</date><risdate>2022</risdate><volume>94</volume><issue>49</issue><spage>17011</spage><epage>17019</epage><pages>17011-17019</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Raman spectroscopy is commonly used in microplastics identification, but equipment variations yield inconsistent data structures that disrupt the development of communal analytical tools. We report a strategy to overcome the issue using a database of high-resolution, full-window Raman spectra. This approach enables customizable analytical tools to be easily createda feature we demonstrate by creating machine-learning classification models using open-source random-forest, K-nearest neighbors, and multi-layer perceptron algorithms. These models yield &gt;95% classification accuracy when trained on spectroscopic data with spectroscopic data downgraded to 1, 2, 4, or 8 cm–1 spacings in Raman shift. The accuracy can be maintained even in non-ideal conditions, such as with spectroscopic sampling rates of 1 kHz and when microplastic particles are outside the focal plane of the laser. This approach enables the creation of classification models that are robust and adaptable to varied spectrometer setups and experimental needs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36445839</pmid><doi>10.1021/acs.analchem.2c02451</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1593-5602</orcidid><orcidid>https://orcid.org/0000-0003-1209-9653</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2022-12, Vol.94 (49), p.17011-17019
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2742658049
source MEDLINE; American Chemical Society Journals
subjects Algorithms
Analytical chemistry
Chemistry
Classification
Data structures
Focal plane
Learning algorithms
Machine Learning
Microplastics
Microscopy
Multilayer perceptrons
Multilayers
Neural Networks, Computer
Plastics
Raman spectra
Raman spectroscopy
Spectrum Analysis, Raman - methods
title Customizable Machine-Learning Models for Rapid Microplastic Identification Using Raman Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A43%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Customizable%20Machine-Learning%20Models%20for%20Rapid%20Microplastic%20Identification%20Using%20Raman%20Microscopy&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Lei,%20Benjamin&rft.date=2022-12-13&rft.volume=94&rft.issue=49&rft.spage=17011&rft.epage=17019&rft.pages=17011-17019&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.2c02451&rft_dat=%3Cproquest_cross%3E2757124484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2757124484&rft_id=info:pmid/36445839&rfr_iscdi=true