Customizable Machine-Learning Models for Rapid Microplastic Identification Using Raman Microscopy
Raman spectroscopy is commonly used in microplastics identification, but equipment variations yield inconsistent data structures that disrupt the development of communal analytical tools. We report a strategy to overcome the issue using a database of high-resolution, full-window Raman spectra. This...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2022-12, Vol.94 (49), p.17011-17019 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17019 |
---|---|
container_issue | 49 |
container_start_page | 17011 |
container_title | Analytical chemistry (Washington) |
container_volume | 94 |
creator | Lei, Benjamin Bissonnette, Justine R. Hogan, Úna E. Bec, Avery E. Feng, Xinyi Smith, Rodney D. L. |
description | Raman spectroscopy is commonly used in microplastics identification, but equipment variations yield inconsistent data structures that disrupt the development of communal analytical tools. We report a strategy to overcome the issue using a database of high-resolution, full-window Raman spectra. This approach enables customizable analytical tools to be easily createda feature we demonstrate by creating machine-learning classification models using open-source random-forest, K-nearest neighbors, and multi-layer perceptron algorithms. These models yield >95% classification accuracy when trained on spectroscopic data with spectroscopic data downgraded to 1, 2, 4, or 8 cm–1 spacings in Raman shift. The accuracy can be maintained even in non-ideal conditions, such as with spectroscopic sampling rates of 1 kHz and when microplastic particles are outside the focal plane of the laser. This approach enables the creation of classification models that are robust and adaptable to varied spectrometer setups and experimental needs. |
doi_str_mv | 10.1021/acs.analchem.2c02451 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2742658049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2757124484</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-d92799b4dc3bbcd1c762d54cab33c71083bb85b7d05e0ed81e03b88c35195e3d3</originalsourceid><addsrcrecordid>eNp9kc1Lw0AQxRdRbK3-ByIBL15SZ7-SzVGKX9AiiJ7DZHerW5JszCaH-teb0NaDB08Dw--9Yd4j5JLCnAKjt6jDHGss9aet5kwDE5IekSmVDOJEKXZMpgDAY5YCTMhZCBsASoEmp2TCEyGk4tmU4KIPna_cNxaljVaoP11t46XFtnb1R7TyxpYhWvs2esXGmWjldOubEkPndPRsbN25tdPYOV9H72GUvGKF9Y4L2jfbc3KyxjLYi_2ckfeH-7fFU7x8eXxe3C1j5GnSxSZjaZYVwmheFNpQnSbMSKGx4FynFNSwVrJIDUgL1ihqgRdKaS5pJi03fEZudr5N6796G7q8ckHbssTa-j7kLBUskQpENqDXf9CN79shy5GSKWVCKDFQYkeNn4TWrvOmdRW225xCPlaQDxXkhwryfQWD7Gpv3heVNb-iQ-YDADtglP8e_tfzB8NlliI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757124484</pqid></control><display><type>article</type><title>Customizable Machine-Learning Models for Rapid Microplastic Identification Using Raman Microscopy</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Lei, Benjamin ; Bissonnette, Justine R. ; Hogan, Úna E. ; Bec, Avery E. ; Feng, Xinyi ; Smith, Rodney D. L.</creator><creatorcontrib>Lei, Benjamin ; Bissonnette, Justine R. ; Hogan, Úna E. ; Bec, Avery E. ; Feng, Xinyi ; Smith, Rodney D. L.</creatorcontrib><description>Raman spectroscopy is commonly used in microplastics identification, but equipment variations yield inconsistent data structures that disrupt the development of communal analytical tools. We report a strategy to overcome the issue using a database of high-resolution, full-window Raman spectra. This approach enables customizable analytical tools to be easily createda feature we demonstrate by creating machine-learning classification models using open-source random-forest, K-nearest neighbors, and multi-layer perceptron algorithms. These models yield >95% classification accuracy when trained on spectroscopic data with spectroscopic data downgraded to 1, 2, 4, or 8 cm–1 spacings in Raman shift. The accuracy can be maintained even in non-ideal conditions, such as with spectroscopic sampling rates of 1 kHz and when microplastic particles are outside the focal plane of the laser. This approach enables the creation of classification models that are robust and adaptable to varied spectrometer setups and experimental needs.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.2c02451</identifier><identifier>PMID: 36445839</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Analytical chemistry ; Chemistry ; Classification ; Data structures ; Focal plane ; Learning algorithms ; Machine Learning ; Microplastics ; Microscopy ; Multilayer perceptrons ; Multilayers ; Neural Networks, Computer ; Plastics ; Raman spectra ; Raman spectroscopy ; Spectrum Analysis, Raman - methods</subject><ispartof>Analytical chemistry (Washington), 2022-12, Vol.94 (49), p.17011-17019</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 13, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-d92799b4dc3bbcd1c762d54cab33c71083bb85b7d05e0ed81e03b88c35195e3d3</citedby><cites>FETCH-LOGICAL-a376t-d92799b4dc3bbcd1c762d54cab33c71083bb85b7d05e0ed81e03b88c35195e3d3</cites><orcidid>0000-0003-1593-5602 ; 0000-0003-1209-9653</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.2c02451$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.2c02451$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36445839$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lei, Benjamin</creatorcontrib><creatorcontrib>Bissonnette, Justine R.</creatorcontrib><creatorcontrib>Hogan, Úna E.</creatorcontrib><creatorcontrib>Bec, Avery E.</creatorcontrib><creatorcontrib>Feng, Xinyi</creatorcontrib><creatorcontrib>Smith, Rodney D. L.</creatorcontrib><title>Customizable Machine-Learning Models for Rapid Microplastic Identification Using Raman Microscopy</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Raman spectroscopy is commonly used in microplastics identification, but equipment variations yield inconsistent data structures that disrupt the development of communal analytical tools. We report a strategy to overcome the issue using a database of high-resolution, full-window Raman spectra. This approach enables customizable analytical tools to be easily createda feature we demonstrate by creating machine-learning classification models using open-source random-forest, K-nearest neighbors, and multi-layer perceptron algorithms. These models yield >95% classification accuracy when trained on spectroscopic data with spectroscopic data downgraded to 1, 2, 4, or 8 cm–1 spacings in Raman shift. The accuracy can be maintained even in non-ideal conditions, such as with spectroscopic sampling rates of 1 kHz and when microplastic particles are outside the focal plane of the laser. This approach enables the creation of classification models that are robust and adaptable to varied spectrometer setups and experimental needs.</description><subject>Algorithms</subject><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Classification</subject><subject>Data structures</subject><subject>Focal plane</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Microplastics</subject><subject>Microscopy</subject><subject>Multilayer perceptrons</subject><subject>Multilayers</subject><subject>Neural Networks, Computer</subject><subject>Plastics</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Spectrum Analysis, Raman - methods</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1Lw0AQxRdRbK3-ByIBL15SZ7-SzVGKX9AiiJ7DZHerW5JszCaH-teb0NaDB08Dw--9Yd4j5JLCnAKjt6jDHGss9aet5kwDE5IekSmVDOJEKXZMpgDAY5YCTMhZCBsASoEmp2TCEyGk4tmU4KIPna_cNxaljVaoP11t46XFtnb1R7TyxpYhWvs2esXGmWjldOubEkPndPRsbN25tdPYOV9H72GUvGKF9Y4L2jfbc3KyxjLYi_2ckfeH-7fFU7x8eXxe3C1j5GnSxSZjaZYVwmheFNpQnSbMSKGx4FynFNSwVrJIDUgL1ihqgRdKaS5pJi03fEZudr5N6796G7q8ckHbssTa-j7kLBUskQpENqDXf9CN79shy5GSKWVCKDFQYkeNn4TWrvOmdRW225xCPlaQDxXkhwryfQWD7Gpv3heVNb-iQ-YDADtglP8e_tfzB8NlliI</recordid><startdate>20221213</startdate><enddate>20221213</enddate><creator>Lei, Benjamin</creator><creator>Bissonnette, Justine R.</creator><creator>Hogan, Úna E.</creator><creator>Bec, Avery E.</creator><creator>Feng, Xinyi</creator><creator>Smith, Rodney D. L.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1593-5602</orcidid><orcidid>https://orcid.org/0000-0003-1209-9653</orcidid></search><sort><creationdate>20221213</creationdate><title>Customizable Machine-Learning Models for Rapid Microplastic Identification Using Raman Microscopy</title><author>Lei, Benjamin ; Bissonnette, Justine R. ; Hogan, Úna E. ; Bec, Avery E. ; Feng, Xinyi ; Smith, Rodney D. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-d92799b4dc3bbcd1c762d54cab33c71083bb85b7d05e0ed81e03b88c35195e3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Classification</topic><topic>Data structures</topic><topic>Focal plane</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Microplastics</topic><topic>Microscopy</topic><topic>Multilayer perceptrons</topic><topic>Multilayers</topic><topic>Neural Networks, Computer</topic><topic>Plastics</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Spectrum Analysis, Raman - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Benjamin</creatorcontrib><creatorcontrib>Bissonnette, Justine R.</creatorcontrib><creatorcontrib>Hogan, Úna E.</creatorcontrib><creatorcontrib>Bec, Avery E.</creatorcontrib><creatorcontrib>Feng, Xinyi</creatorcontrib><creatorcontrib>Smith, Rodney D. L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Benjamin</au><au>Bissonnette, Justine R.</au><au>Hogan, Úna E.</au><au>Bec, Avery E.</au><au>Feng, Xinyi</au><au>Smith, Rodney D. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Customizable Machine-Learning Models for Rapid Microplastic Identification Using Raman Microscopy</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2022-12-13</date><risdate>2022</risdate><volume>94</volume><issue>49</issue><spage>17011</spage><epage>17019</epage><pages>17011-17019</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Raman spectroscopy is commonly used in microplastics identification, but equipment variations yield inconsistent data structures that disrupt the development of communal analytical tools. We report a strategy to overcome the issue using a database of high-resolution, full-window Raman spectra. This approach enables customizable analytical tools to be easily createda feature we demonstrate by creating machine-learning classification models using open-source random-forest, K-nearest neighbors, and multi-layer perceptron algorithms. These models yield >95% classification accuracy when trained on spectroscopic data with spectroscopic data downgraded to 1, 2, 4, or 8 cm–1 spacings in Raman shift. The accuracy can be maintained even in non-ideal conditions, such as with spectroscopic sampling rates of 1 kHz and when microplastic particles are outside the focal plane of the laser. This approach enables the creation of classification models that are robust and adaptable to varied spectrometer setups and experimental needs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36445839</pmid><doi>10.1021/acs.analchem.2c02451</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1593-5602</orcidid><orcidid>https://orcid.org/0000-0003-1209-9653</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2022-12, Vol.94 (49), p.17011-17019 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2742658049 |
source | MEDLINE; American Chemical Society Journals |
subjects | Algorithms Analytical chemistry Chemistry Classification Data structures Focal plane Learning algorithms Machine Learning Microplastics Microscopy Multilayer perceptrons Multilayers Neural Networks, Computer Plastics Raman spectra Raman spectroscopy Spectrum Analysis, Raman - methods |
title | Customizable Machine-Learning Models for Rapid Microplastic Identification Using Raman Microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A43%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Customizable%20Machine-Learning%20Models%20for%20Rapid%20Microplastic%20Identification%20Using%20Raman%20Microscopy&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Lei,%20Benjamin&rft.date=2022-12-13&rft.volume=94&rft.issue=49&rft.spage=17011&rft.epage=17019&rft.pages=17011-17019&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.2c02451&rft_dat=%3Cproquest_cross%3E2757124484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2757124484&rft_id=info:pmid/36445839&rfr_iscdi=true |