GAMaterial—A genetic‐algorithm software for material design and discovery

Genetic algorithms (GAs) are stochastic global search methods inspired by biological evolution. They have been used extensively in chemistry and materials science coupled with theoretical methods, ranging from force‐fields to high‐throughput first‐principles methods. The methodology allows an accura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2023-03, Vol.44 (7), p.814-823
Hauptverfasser: Lourenço, Maicon Pierre, Hostaš, Jiří, Herrera, Lizandra Barrios, Calaminici, Patrizia, Köster, Andreas M., Tchagang, Alain, Salahub, Dennis R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 823
container_issue 7
container_start_page 814
container_title Journal of computational chemistry
container_volume 44
creator Lourenço, Maicon Pierre
Hostaš, Jiří
Herrera, Lizandra Barrios
Calaminici, Patrizia
Köster, Andreas M.
Tchagang, Alain
Salahub, Dennis R.
description Genetic algorithms (GAs) are stochastic global search methods inspired by biological evolution. They have been used extensively in chemistry and materials science coupled with theoretical methods, ranging from force‐fields to high‐throughput first‐principles methods. The methodology allows an accurate and automated structural determination for molecules, atomic clusters, nanoparticles, and solid surfaces, fundamental to understanding chemical processes in catalysis and environmental sciences, for instance. In this work, we propose a new genetic algorithm software, GAMaterial, implemented in Python3.x, that performs global searches to elucidate the structures of atomic clusters, doped clusters or materials and atomic clusters on surfaces. For all these applications, it is possible to accelerate the GA search by using machine learning (ML), the ML@GA method, to build subsequent populations. Results for ML@GA applied for the dopant distributions in atomic clusters are presented. The GAMaterial software was applied for the automatic structural search for the Ti6O12 cluster, doping Al in Si11 (4Al@Si11) and Na10 supported on graphene (Na10@graphene), where DFTB calculations were used to sample the complex search surfaces with reasonably low computational cost. Finally, the global search by GA of the Mo8C4 cluster was considered, where DFT calculations were made with the deMon2k code, which is interfaced with GAMaterial. The GAMaterial software, implemented in Python3.x, performs global searches using genetic algorithms to elucidate or determine the structures of atomic clusters, defects (doping or vacancy) in clusters or solids, atomic clusters on surfaces and surface reconstruction. Machine learning methods are available to accelerate the search.
doi_str_mv 10.1002/jcc.27043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2742655946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2742655946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3533-34542f069c334d2718a3864534e394003660157dc4e17e0f3856fe302b6f0d093</originalsourceid><addsrcrecordid>eNp10MtKw0AYBeBBFFurC19AAm50kXbuySxL0Kq0uFFwF6bJn5qSS51JLd31EVz4hH0Sp6a6EFydzcfhcBA6J7hPMKaDeZL0aYA5O0BdgpX0VRi8HKIuJor6oRSkg06snWOMmZD8GHWY5JwrIrtoMhpOdAMm18V28zn0ZlBBkyfbzYcuZrXJm9fSs3XWrLQBL6uNV-61l4LNZ5Wnq9RLc5vU72DWp-go04WFs3320PPtzVN0548fR_fRcOwnTDDmMy44zbBUCWM8pQEJNQslF4wDU9ytlBITEaQJBxIAzlgoZAYM06nMcIoV66Grtndh6rcl2CYu3QQoCl1BvbQxDTiVQiguHb38Q-f10lRunVNSuSGC7tR1qxJTW2sgixcmL7VZxwTHu49j93H8_bGzF_vG5bSE9Ff-nOrAoAWrvID1_03xQxS1lV8Qo4TB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769542526</pqid></control><display><type>article</type><title>GAMaterial—A genetic‐algorithm software for material design and discovery</title><source>Wiley Journals</source><creator>Lourenço, Maicon Pierre ; Hostaš, Jiří ; Herrera, Lizandra Barrios ; Calaminici, Patrizia ; Köster, Andreas M. ; Tchagang, Alain ; Salahub, Dennis R.</creator><creatorcontrib>Lourenço, Maicon Pierre ; Hostaš, Jiří ; Herrera, Lizandra Barrios ; Calaminici, Patrizia ; Köster, Andreas M. ; Tchagang, Alain ; Salahub, Dennis R.</creatorcontrib><description>Genetic algorithms (GAs) are stochastic global search methods inspired by biological evolution. They have been used extensively in chemistry and materials science coupled with theoretical methods, ranging from force‐fields to high‐throughput first‐principles methods. The methodology allows an accurate and automated structural determination for molecules, atomic clusters, nanoparticles, and solid surfaces, fundamental to understanding chemical processes in catalysis and environmental sciences, for instance. In this work, we propose a new genetic algorithm software, GAMaterial, implemented in Python3.x, that performs global searches to elucidate the structures of atomic clusters, doped clusters or materials and atomic clusters on surfaces. For all these applications, it is possible to accelerate the GA search by using machine learning (ML), the ML@GA method, to build subsequent populations. Results for ML@GA applied for the dopant distributions in atomic clusters are presented. The GAMaterial software was applied for the automatic structural search for the Ti6O12 cluster, doping Al in Si11 (4Al@Si11) and Na10 supported on graphene (Na10@graphene), where DFTB calculations were used to sample the complex search surfaces with reasonably low computational cost. Finally, the global search by GA of the Mo8C4 cluster was considered, where DFT calculations were made with the deMon2k code, which is interfaced with GAMaterial. The GAMaterial software, implemented in Python3.x, performs global searches using genetic algorithms to elucidate or determine the structures of atomic clusters, defects (doping or vacancy) in clusters or solids, atomic clusters on surfaces and surface reconstruction. Machine learning methods are available to accelerate the search.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.27043</identifier><identifier>PMID: 36444916</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Atomic clusters ; Biological evolution ; Chemical reactions ; cluster interfaces ; defects ; genetic algorithm ; Genetic algorithms ; global optimization ; Graphene ; Machine learning ; Materials science ; Mathematical analysis ; Nanoparticles ; Search methods ; Software ; Solid surfaces</subject><ispartof>Journal of computational chemistry, 2023-03, Vol.44 (7), p.814-823</ispartof><rights>2022 Wiley Periodicals LLC.</rights><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3533-34542f069c334d2718a3864534e394003660157dc4e17e0f3856fe302b6f0d093</citedby><cites>FETCH-LOGICAL-c3533-34542f069c334d2718a3864534e394003660157dc4e17e0f3856fe302b6f0d093</cites><orcidid>0000-0001-9842-4271 ; 0000-0002-0110-8318 ; 0000-0002-9848-3762 ; 0000-0001-9279-3455 ; 0000-0001-6652-602X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.27043$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.27043$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36444916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lourenço, Maicon Pierre</creatorcontrib><creatorcontrib>Hostaš, Jiří</creatorcontrib><creatorcontrib>Herrera, Lizandra Barrios</creatorcontrib><creatorcontrib>Calaminici, Patrizia</creatorcontrib><creatorcontrib>Köster, Andreas M.</creatorcontrib><creatorcontrib>Tchagang, Alain</creatorcontrib><creatorcontrib>Salahub, Dennis R.</creatorcontrib><title>GAMaterial—A genetic‐algorithm software for material design and discovery</title><title>Journal of computational chemistry</title><addtitle>J Comput Chem</addtitle><description>Genetic algorithms (GAs) are stochastic global search methods inspired by biological evolution. They have been used extensively in chemistry and materials science coupled with theoretical methods, ranging from force‐fields to high‐throughput first‐principles methods. The methodology allows an accurate and automated structural determination for molecules, atomic clusters, nanoparticles, and solid surfaces, fundamental to understanding chemical processes in catalysis and environmental sciences, for instance. In this work, we propose a new genetic algorithm software, GAMaterial, implemented in Python3.x, that performs global searches to elucidate the structures of atomic clusters, doped clusters or materials and atomic clusters on surfaces. For all these applications, it is possible to accelerate the GA search by using machine learning (ML), the ML@GA method, to build subsequent populations. Results for ML@GA applied for the dopant distributions in atomic clusters are presented. The GAMaterial software was applied for the automatic structural search for the Ti6O12 cluster, doping Al in Si11 (4Al@Si11) and Na10 supported on graphene (Na10@graphene), where DFTB calculations were used to sample the complex search surfaces with reasonably low computational cost. Finally, the global search by GA of the Mo8C4 cluster was considered, where DFT calculations were made with the deMon2k code, which is interfaced with GAMaterial. The GAMaterial software, implemented in Python3.x, performs global searches using genetic algorithms to elucidate or determine the structures of atomic clusters, defects (doping or vacancy) in clusters or solids, atomic clusters on surfaces and surface reconstruction. Machine learning methods are available to accelerate the search.</description><subject>Atomic clusters</subject><subject>Biological evolution</subject><subject>Chemical reactions</subject><subject>cluster interfaces</subject><subject>defects</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>global optimization</subject><subject>Graphene</subject><subject>Machine learning</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Nanoparticles</subject><subject>Search methods</subject><subject>Software</subject><subject>Solid surfaces</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10MtKw0AYBeBBFFurC19AAm50kXbuySxL0Kq0uFFwF6bJn5qSS51JLd31EVz4hH0Sp6a6EFydzcfhcBA6J7hPMKaDeZL0aYA5O0BdgpX0VRi8HKIuJor6oRSkg06snWOMmZD8GHWY5JwrIrtoMhpOdAMm18V28zn0ZlBBkyfbzYcuZrXJm9fSs3XWrLQBL6uNV-61l4LNZ5Wnq9RLc5vU72DWp-go04WFs3320PPtzVN0548fR_fRcOwnTDDmMy44zbBUCWM8pQEJNQslF4wDU9ytlBITEaQJBxIAzlgoZAYM06nMcIoV66Grtndh6rcl2CYu3QQoCl1BvbQxDTiVQiguHb38Q-f10lRunVNSuSGC7tR1qxJTW2sgixcmL7VZxwTHu49j93H8_bGzF_vG5bSE9Ff-nOrAoAWrvID1_03xQxS1lV8Qo4TB</recordid><startdate>20230315</startdate><enddate>20230315</enddate><creator>Lourenço, Maicon Pierre</creator><creator>Hostaš, Jiří</creator><creator>Herrera, Lizandra Barrios</creator><creator>Calaminici, Patrizia</creator><creator>Köster, Andreas M.</creator><creator>Tchagang, Alain</creator><creator>Salahub, Dennis R.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9842-4271</orcidid><orcidid>https://orcid.org/0000-0002-0110-8318</orcidid><orcidid>https://orcid.org/0000-0002-9848-3762</orcidid><orcidid>https://orcid.org/0000-0001-9279-3455</orcidid><orcidid>https://orcid.org/0000-0001-6652-602X</orcidid></search><sort><creationdate>20230315</creationdate><title>GAMaterial—A genetic‐algorithm software for material design and discovery</title><author>Lourenço, Maicon Pierre ; Hostaš, Jiří ; Herrera, Lizandra Barrios ; Calaminici, Patrizia ; Köster, Andreas M. ; Tchagang, Alain ; Salahub, Dennis R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3533-34542f069c334d2718a3864534e394003660157dc4e17e0f3856fe302b6f0d093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atomic clusters</topic><topic>Biological evolution</topic><topic>Chemical reactions</topic><topic>cluster interfaces</topic><topic>defects</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>global optimization</topic><topic>Graphene</topic><topic>Machine learning</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Nanoparticles</topic><topic>Search methods</topic><topic>Software</topic><topic>Solid surfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lourenço, Maicon Pierre</creatorcontrib><creatorcontrib>Hostaš, Jiří</creatorcontrib><creatorcontrib>Herrera, Lizandra Barrios</creatorcontrib><creatorcontrib>Calaminici, Patrizia</creatorcontrib><creatorcontrib>Köster, Andreas M.</creatorcontrib><creatorcontrib>Tchagang, Alain</creatorcontrib><creatorcontrib>Salahub, Dennis R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lourenço, Maicon Pierre</au><au>Hostaš, Jiří</au><au>Herrera, Lizandra Barrios</au><au>Calaminici, Patrizia</au><au>Köster, Andreas M.</au><au>Tchagang, Alain</au><au>Salahub, Dennis R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GAMaterial—A genetic‐algorithm software for material design and discovery</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J Comput Chem</addtitle><date>2023-03-15</date><risdate>2023</risdate><volume>44</volume><issue>7</issue><spage>814</spage><epage>823</epage><pages>814-823</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>Genetic algorithms (GAs) are stochastic global search methods inspired by biological evolution. They have been used extensively in chemistry and materials science coupled with theoretical methods, ranging from force‐fields to high‐throughput first‐principles methods. The methodology allows an accurate and automated structural determination for molecules, atomic clusters, nanoparticles, and solid surfaces, fundamental to understanding chemical processes in catalysis and environmental sciences, for instance. In this work, we propose a new genetic algorithm software, GAMaterial, implemented in Python3.x, that performs global searches to elucidate the structures of atomic clusters, doped clusters or materials and atomic clusters on surfaces. For all these applications, it is possible to accelerate the GA search by using machine learning (ML), the ML@GA method, to build subsequent populations. Results for ML@GA applied for the dopant distributions in atomic clusters are presented. The GAMaterial software was applied for the automatic structural search for the Ti6O12 cluster, doping Al in Si11 (4Al@Si11) and Na10 supported on graphene (Na10@graphene), where DFTB calculations were used to sample the complex search surfaces with reasonably low computational cost. Finally, the global search by GA of the Mo8C4 cluster was considered, where DFT calculations were made with the deMon2k code, which is interfaced with GAMaterial. The GAMaterial software, implemented in Python3.x, performs global searches using genetic algorithms to elucidate or determine the structures of atomic clusters, defects (doping or vacancy) in clusters or solids, atomic clusters on surfaces and surface reconstruction. Machine learning methods are available to accelerate the search.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36444916</pmid><doi>10.1002/jcc.27043</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9842-4271</orcidid><orcidid>https://orcid.org/0000-0002-0110-8318</orcidid><orcidid>https://orcid.org/0000-0002-9848-3762</orcidid><orcidid>https://orcid.org/0000-0001-9279-3455</orcidid><orcidid>https://orcid.org/0000-0001-6652-602X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 2023-03, Vol.44 (7), p.814-823
issn 0192-8651
1096-987X
language eng
recordid cdi_proquest_miscellaneous_2742655946
source Wiley Journals
subjects Atomic clusters
Biological evolution
Chemical reactions
cluster interfaces
defects
genetic algorithm
Genetic algorithms
global optimization
Graphene
Machine learning
Materials science
Mathematical analysis
Nanoparticles
Search methods
Software
Solid surfaces
title GAMaterial—A genetic‐algorithm software for material design and discovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A39%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GAMaterial%E2%80%94A%20genetic%E2%80%90algorithm%20software%20for%20material%20design%20and%20discovery&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Louren%C3%A7o,%20Maicon%20Pierre&rft.date=2023-03-15&rft.volume=44&rft.issue=7&rft.spage=814&rft.epage=823&rft.pages=814-823&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.27043&rft_dat=%3Cproquest_cross%3E2742655946%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2769542526&rft_id=info:pmid/36444916&rfr_iscdi=true