GAMaterial—A genetic‐algorithm software for material design and discovery
Genetic algorithms (GAs) are stochastic global search methods inspired by biological evolution. They have been used extensively in chemistry and materials science coupled with theoretical methods, ranging from force‐fields to high‐throughput first‐principles methods. The methodology allows an accura...
Gespeichert in:
Veröffentlicht in: | Journal of computational chemistry 2023-03, Vol.44 (7), p.814-823 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 823 |
---|---|
container_issue | 7 |
container_start_page | 814 |
container_title | Journal of computational chemistry |
container_volume | 44 |
creator | Lourenço, Maicon Pierre Hostaš, Jiří Herrera, Lizandra Barrios Calaminici, Patrizia Köster, Andreas M. Tchagang, Alain Salahub, Dennis R. |
description | Genetic algorithms (GAs) are stochastic global search methods inspired by biological evolution. They have been used extensively in chemistry and materials science coupled with theoretical methods, ranging from force‐fields to high‐throughput first‐principles methods. The methodology allows an accurate and automated structural determination for molecules, atomic clusters, nanoparticles, and solid surfaces, fundamental to understanding chemical processes in catalysis and environmental sciences, for instance. In this work, we propose a new genetic algorithm software, GAMaterial, implemented in Python3.x, that performs global searches to elucidate the structures of atomic clusters, doped clusters or materials and atomic clusters on surfaces. For all these applications, it is possible to accelerate the GA search by using machine learning (ML), the ML@GA method, to build subsequent populations. Results for ML@GA applied for the dopant distributions in atomic clusters are presented. The GAMaterial software was applied for the automatic structural search for the Ti6O12 cluster, doping Al in Si11 (4Al@Si11) and Na10 supported on graphene (Na10@graphene), where DFTB calculations were used to sample the complex search surfaces with reasonably low computational cost. Finally, the global search by GA of the Mo8C4 cluster was considered, where DFT calculations were made with the deMon2k code, which is interfaced with GAMaterial.
The GAMaterial software, implemented in Python3.x, performs global searches using genetic algorithms to elucidate or determine the structures of atomic clusters, defects (doping or vacancy) in clusters or solids, atomic clusters on surfaces and surface reconstruction. Machine learning methods are available to accelerate the search. |
doi_str_mv | 10.1002/jcc.27043 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2742655946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2742655946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3533-34542f069c334d2718a3864534e394003660157dc4e17e0f3856fe302b6f0d093</originalsourceid><addsrcrecordid>eNp10MtKw0AYBeBBFFurC19AAm50kXbuySxL0Kq0uFFwF6bJn5qSS51JLd31EVz4hH0Sp6a6EFydzcfhcBA6J7hPMKaDeZL0aYA5O0BdgpX0VRi8HKIuJor6oRSkg06snWOMmZD8GHWY5JwrIrtoMhpOdAMm18V28zn0ZlBBkyfbzYcuZrXJm9fSs3XWrLQBL6uNV-61l4LNZ5Wnq9RLc5vU72DWp-go04WFs3320PPtzVN0548fR_fRcOwnTDDmMy44zbBUCWM8pQEJNQslF4wDU9ytlBITEaQJBxIAzlgoZAYM06nMcIoV66Grtndh6rcl2CYu3QQoCl1BvbQxDTiVQiguHb38Q-f10lRunVNSuSGC7tR1qxJTW2sgixcmL7VZxwTHu49j93H8_bGzF_vG5bSE9Ff-nOrAoAWrvID1_03xQxS1lV8Qo4TB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769542526</pqid></control><display><type>article</type><title>GAMaterial—A genetic‐algorithm software for material design and discovery</title><source>Wiley Journals</source><creator>Lourenço, Maicon Pierre ; Hostaš, Jiří ; Herrera, Lizandra Barrios ; Calaminici, Patrizia ; Köster, Andreas M. ; Tchagang, Alain ; Salahub, Dennis R.</creator><creatorcontrib>Lourenço, Maicon Pierre ; Hostaš, Jiří ; Herrera, Lizandra Barrios ; Calaminici, Patrizia ; Köster, Andreas M. ; Tchagang, Alain ; Salahub, Dennis R.</creatorcontrib><description>Genetic algorithms (GAs) are stochastic global search methods inspired by biological evolution. They have been used extensively in chemistry and materials science coupled with theoretical methods, ranging from force‐fields to high‐throughput first‐principles methods. The methodology allows an accurate and automated structural determination for molecules, atomic clusters, nanoparticles, and solid surfaces, fundamental to understanding chemical processes in catalysis and environmental sciences, for instance. In this work, we propose a new genetic algorithm software, GAMaterial, implemented in Python3.x, that performs global searches to elucidate the structures of atomic clusters, doped clusters or materials and atomic clusters on surfaces. For all these applications, it is possible to accelerate the GA search by using machine learning (ML), the ML@GA method, to build subsequent populations. Results for ML@GA applied for the dopant distributions in atomic clusters are presented. The GAMaterial software was applied for the automatic structural search for the Ti6O12 cluster, doping Al in Si11 (4Al@Si11) and Na10 supported on graphene (Na10@graphene), where DFTB calculations were used to sample the complex search surfaces with reasonably low computational cost. Finally, the global search by GA of the Mo8C4 cluster was considered, where DFT calculations were made with the deMon2k code, which is interfaced with GAMaterial.
The GAMaterial software, implemented in Python3.x, performs global searches using genetic algorithms to elucidate or determine the structures of atomic clusters, defects (doping or vacancy) in clusters or solids, atomic clusters on surfaces and surface reconstruction. Machine learning methods are available to accelerate the search.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.27043</identifier><identifier>PMID: 36444916</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Atomic clusters ; Biological evolution ; Chemical reactions ; cluster interfaces ; defects ; genetic algorithm ; Genetic algorithms ; global optimization ; Graphene ; Machine learning ; Materials science ; Mathematical analysis ; Nanoparticles ; Search methods ; Software ; Solid surfaces</subject><ispartof>Journal of computational chemistry, 2023-03, Vol.44 (7), p.814-823</ispartof><rights>2022 Wiley Periodicals LLC.</rights><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3533-34542f069c334d2718a3864534e394003660157dc4e17e0f3856fe302b6f0d093</citedby><cites>FETCH-LOGICAL-c3533-34542f069c334d2718a3864534e394003660157dc4e17e0f3856fe302b6f0d093</cites><orcidid>0000-0001-9842-4271 ; 0000-0002-0110-8318 ; 0000-0002-9848-3762 ; 0000-0001-9279-3455 ; 0000-0001-6652-602X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.27043$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.27043$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36444916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lourenço, Maicon Pierre</creatorcontrib><creatorcontrib>Hostaš, Jiří</creatorcontrib><creatorcontrib>Herrera, Lizandra Barrios</creatorcontrib><creatorcontrib>Calaminici, Patrizia</creatorcontrib><creatorcontrib>Köster, Andreas M.</creatorcontrib><creatorcontrib>Tchagang, Alain</creatorcontrib><creatorcontrib>Salahub, Dennis R.</creatorcontrib><title>GAMaterial—A genetic‐algorithm software for material design and discovery</title><title>Journal of computational chemistry</title><addtitle>J Comput Chem</addtitle><description>Genetic algorithms (GAs) are stochastic global search methods inspired by biological evolution. They have been used extensively in chemistry and materials science coupled with theoretical methods, ranging from force‐fields to high‐throughput first‐principles methods. The methodology allows an accurate and automated structural determination for molecules, atomic clusters, nanoparticles, and solid surfaces, fundamental to understanding chemical processes in catalysis and environmental sciences, for instance. In this work, we propose a new genetic algorithm software, GAMaterial, implemented in Python3.x, that performs global searches to elucidate the structures of atomic clusters, doped clusters or materials and atomic clusters on surfaces. For all these applications, it is possible to accelerate the GA search by using machine learning (ML), the ML@GA method, to build subsequent populations. Results for ML@GA applied for the dopant distributions in atomic clusters are presented. The GAMaterial software was applied for the automatic structural search for the Ti6O12 cluster, doping Al in Si11 (4Al@Si11) and Na10 supported on graphene (Na10@graphene), where DFTB calculations were used to sample the complex search surfaces with reasonably low computational cost. Finally, the global search by GA of the Mo8C4 cluster was considered, where DFT calculations were made with the deMon2k code, which is interfaced with GAMaterial.
The GAMaterial software, implemented in Python3.x, performs global searches using genetic algorithms to elucidate or determine the structures of atomic clusters, defects (doping or vacancy) in clusters or solids, atomic clusters on surfaces and surface reconstruction. Machine learning methods are available to accelerate the search.</description><subject>Atomic clusters</subject><subject>Biological evolution</subject><subject>Chemical reactions</subject><subject>cluster interfaces</subject><subject>defects</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>global optimization</subject><subject>Graphene</subject><subject>Machine learning</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Nanoparticles</subject><subject>Search methods</subject><subject>Software</subject><subject>Solid surfaces</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10MtKw0AYBeBBFFurC19AAm50kXbuySxL0Kq0uFFwF6bJn5qSS51JLd31EVz4hH0Sp6a6EFydzcfhcBA6J7hPMKaDeZL0aYA5O0BdgpX0VRi8HKIuJor6oRSkg06snWOMmZD8GHWY5JwrIrtoMhpOdAMm18V28zn0ZlBBkyfbzYcuZrXJm9fSs3XWrLQBL6uNV-61l4LNZ5Wnq9RLc5vU72DWp-go04WFs3320PPtzVN0548fR_fRcOwnTDDmMy44zbBUCWM8pQEJNQslF4wDU9ytlBITEaQJBxIAzlgoZAYM06nMcIoV66Grtndh6rcl2CYu3QQoCl1BvbQxDTiVQiguHb38Q-f10lRunVNSuSGC7tR1qxJTW2sgixcmL7VZxwTHu49j93H8_bGzF_vG5bSE9Ff-nOrAoAWrvID1_03xQxS1lV8Qo4TB</recordid><startdate>20230315</startdate><enddate>20230315</enddate><creator>Lourenço, Maicon Pierre</creator><creator>Hostaš, Jiří</creator><creator>Herrera, Lizandra Barrios</creator><creator>Calaminici, Patrizia</creator><creator>Köster, Andreas M.</creator><creator>Tchagang, Alain</creator><creator>Salahub, Dennis R.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9842-4271</orcidid><orcidid>https://orcid.org/0000-0002-0110-8318</orcidid><orcidid>https://orcid.org/0000-0002-9848-3762</orcidid><orcidid>https://orcid.org/0000-0001-9279-3455</orcidid><orcidid>https://orcid.org/0000-0001-6652-602X</orcidid></search><sort><creationdate>20230315</creationdate><title>GAMaterial—A genetic‐algorithm software for material design and discovery</title><author>Lourenço, Maicon Pierre ; Hostaš, Jiří ; Herrera, Lizandra Barrios ; Calaminici, Patrizia ; Köster, Andreas M. ; Tchagang, Alain ; Salahub, Dennis R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3533-34542f069c334d2718a3864534e394003660157dc4e17e0f3856fe302b6f0d093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atomic clusters</topic><topic>Biological evolution</topic><topic>Chemical reactions</topic><topic>cluster interfaces</topic><topic>defects</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>global optimization</topic><topic>Graphene</topic><topic>Machine learning</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Nanoparticles</topic><topic>Search methods</topic><topic>Software</topic><topic>Solid surfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lourenço, Maicon Pierre</creatorcontrib><creatorcontrib>Hostaš, Jiří</creatorcontrib><creatorcontrib>Herrera, Lizandra Barrios</creatorcontrib><creatorcontrib>Calaminici, Patrizia</creatorcontrib><creatorcontrib>Köster, Andreas M.</creatorcontrib><creatorcontrib>Tchagang, Alain</creatorcontrib><creatorcontrib>Salahub, Dennis R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lourenço, Maicon Pierre</au><au>Hostaš, Jiří</au><au>Herrera, Lizandra Barrios</au><au>Calaminici, Patrizia</au><au>Köster, Andreas M.</au><au>Tchagang, Alain</au><au>Salahub, Dennis R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GAMaterial—A genetic‐algorithm software for material design and discovery</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J Comput Chem</addtitle><date>2023-03-15</date><risdate>2023</risdate><volume>44</volume><issue>7</issue><spage>814</spage><epage>823</epage><pages>814-823</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>Genetic algorithms (GAs) are stochastic global search methods inspired by biological evolution. They have been used extensively in chemistry and materials science coupled with theoretical methods, ranging from force‐fields to high‐throughput first‐principles methods. The methodology allows an accurate and automated structural determination for molecules, atomic clusters, nanoparticles, and solid surfaces, fundamental to understanding chemical processes in catalysis and environmental sciences, for instance. In this work, we propose a new genetic algorithm software, GAMaterial, implemented in Python3.x, that performs global searches to elucidate the structures of atomic clusters, doped clusters or materials and atomic clusters on surfaces. For all these applications, it is possible to accelerate the GA search by using machine learning (ML), the ML@GA method, to build subsequent populations. Results for ML@GA applied for the dopant distributions in atomic clusters are presented. The GAMaterial software was applied for the automatic structural search for the Ti6O12 cluster, doping Al in Si11 (4Al@Si11) and Na10 supported on graphene (Na10@graphene), where DFTB calculations were used to sample the complex search surfaces with reasonably low computational cost. Finally, the global search by GA of the Mo8C4 cluster was considered, where DFT calculations were made with the deMon2k code, which is interfaced with GAMaterial.
The GAMaterial software, implemented in Python3.x, performs global searches using genetic algorithms to elucidate or determine the structures of atomic clusters, defects (doping or vacancy) in clusters or solids, atomic clusters on surfaces and surface reconstruction. Machine learning methods are available to accelerate the search.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>36444916</pmid><doi>10.1002/jcc.27043</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9842-4271</orcidid><orcidid>https://orcid.org/0000-0002-0110-8318</orcidid><orcidid>https://orcid.org/0000-0002-9848-3762</orcidid><orcidid>https://orcid.org/0000-0001-9279-3455</orcidid><orcidid>https://orcid.org/0000-0001-6652-602X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0192-8651 |
ispartof | Journal of computational chemistry, 2023-03, Vol.44 (7), p.814-823 |
issn | 0192-8651 1096-987X |
language | eng |
recordid | cdi_proquest_miscellaneous_2742655946 |
source | Wiley Journals |
subjects | Atomic clusters Biological evolution Chemical reactions cluster interfaces defects genetic algorithm Genetic algorithms global optimization Graphene Machine learning Materials science Mathematical analysis Nanoparticles Search methods Software Solid surfaces |
title | GAMaterial—A genetic‐algorithm software for material design and discovery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A39%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GAMaterial%E2%80%94A%20genetic%E2%80%90algorithm%20software%20for%20material%20design%20and%20discovery&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Louren%C3%A7o,%20Maicon%20Pierre&rft.date=2023-03-15&rft.volume=44&rft.issue=7&rft.spage=814&rft.epage=823&rft.pages=814-823&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.27043&rft_dat=%3Cproquest_cross%3E2742655946%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2769542526&rft_id=info:pmid/36444916&rfr_iscdi=true |