Medium‐Entropy‐Alloy FeCoNi Enables Lithium–Sulfur Batteries with Superb Low‐Temperature Performance
Lithium‐sulfur battery suffers from sluggish kinetics at low temperatures, resulting in serious polarization and reduced capacity. Here, this work introduces medium‐entropy‐alloy FeCoNi as catalysts and carbon nanofibers (CNFs) as hosts. FeCoNi nanoparticles are in suit synthesized in cotton‐derived...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-02, Vol.19 (5), p.e2205525-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | e2205525 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 19 |
creator | Pang, Xiaowan Geng, Haitao Dong, Shaowen An, Baigang Zheng, Shumin Wang, Bao |
description | Lithium‐sulfur battery suffers from sluggish kinetics at low temperatures, resulting in serious polarization and reduced capacity. Here, this work introduces medium‐entropy‐alloy FeCoNi as catalysts and carbon nanofibers (CNFs) as hosts. FeCoNi nanoparticles are in suit synthesized in cotton‐derived CNFs. FeCoNi with atomic‐level mixing of each element can effectively modulate lithium polysulfides (LiPSs), multiple components making them promising to catalyze more LiPSs species. The higher configurational entropy endows FeCoNi@CNFs with extraordinary electrochemical activity, corrosion resistance, and mechanical properties. The fractal structure of CNFs provides a large specific surface area, leaving room for volume expansion and Li2S accumulation, facilitating electrolyte wetting. The unique 3D conductive network structure can suppress the shuttle effect by physicochemical adsorption of LiPSs. This work systematically evaluates the performance of the obtained Li2S6/FeCoNi@CNFs electrode. The initial discharge capacity of Li2S6/FeCoNi@CNFs reaches 1670.8 mAh g−1 at 0.1 C under ‐20 °C. After 100 cycles at 0.2 C, the capacity decreases from 1462.3 to 1250.1 mAh g−1. Notably, even under ‐40 °C at 0.1 C, the initial discharge capacity of Li2S6/FeCoNi@CNFs still reaches 1202.8 mAh g−1. After 100 cycles at 0.2 C, the capacity retention rate is 50%. This work has important implications for the development of low‐temperature Li‐S batteries.
A self‐supporting 3D porous film with in situ growth of FeCoNi alloy nanoparticles is designed. FeCoNi medium‐entropy‐alloy as an efficient catalyst to prevent polysulfides accumulate, accelerate kinetics, and enhance adsorption‐conversion ability at low temperature. The results show that lithium‐sulfur battery has excellent low‐temperature performance. After 100 cycles under −20 °C and 0.2 C, the capacity can reach 1250.1 mAh g‐1. |
doi_str_mv | 10.1002/smll.202205525 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2740507542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2740507542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3735-2b04e925224220717cd6bf8f0adbc3dc05b043649bc4c4b279b7d10269de234a3</originalsourceid><addsrcrecordid>eNqFkc9O3DAQh60KVP601x6rSFx62cUeO_HmCKsFKgVaaek5sp2JGuTEWzvWam99BCTekCfBsHQrceHksebzpxn_CPnC6JRRCqeht3YKFIDmOeQfyCErGJ8UMyj3djWjB-QohDtKOQMhP5IDXgjOZyAPib3Gpov949_7xTB6t9qk6sxat8kucO5uumwxKG0xZFU3_n4BH5bRttFn52oc0XeptU6tbBlX6HVWuXUy3GKfbmqMHrOf6FvnezUY_ET2W2UDfn49j8mvi8Xt_GpS_bj8Pj-rJoZLnk9AU4El5AAi7SWZNE2h21lLVaMNbwzNE5BWKLURRmiQpZYNo1CUDQIXih-Tb1vvyrs_EcNY910waK0a0MVQgxQ0pzIXkNCTN-idi35I0yVKMg7AZzJR0y1lvAvBY1uvfNcrv6kZrZ9zqJ9zqHc5pAdfX7VR99js8H8fn4ByC6w7i5t3dPXyuqr-y58AMiqYjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771322387</pqid></control><display><type>article</type><title>Medium‐Entropy‐Alloy FeCoNi Enables Lithium–Sulfur Batteries with Superb Low‐Temperature Performance</title><source>Wiley Journals</source><creator>Pang, Xiaowan ; Geng, Haitao ; Dong, Shaowen ; An, Baigang ; Zheng, Shumin ; Wang, Bao</creator><creatorcontrib>Pang, Xiaowan ; Geng, Haitao ; Dong, Shaowen ; An, Baigang ; Zheng, Shumin ; Wang, Bao</creatorcontrib><description>Lithium‐sulfur battery suffers from sluggish kinetics at low temperatures, resulting in serious polarization and reduced capacity. Here, this work introduces medium‐entropy‐alloy FeCoNi as catalysts and carbon nanofibers (CNFs) as hosts. FeCoNi nanoparticles are in suit synthesized in cotton‐derived CNFs. FeCoNi with atomic‐level mixing of each element can effectively modulate lithium polysulfides (LiPSs), multiple components making them promising to catalyze more LiPSs species. The higher configurational entropy endows FeCoNi@CNFs with extraordinary electrochemical activity, corrosion resistance, and mechanical properties. The fractal structure of CNFs provides a large specific surface area, leaving room for volume expansion and Li2S accumulation, facilitating electrolyte wetting. The unique 3D conductive network structure can suppress the shuttle effect by physicochemical adsorption of LiPSs. This work systematically evaluates the performance of the obtained Li2S6/FeCoNi@CNFs electrode. The initial discharge capacity of Li2S6/FeCoNi@CNFs reaches 1670.8 mAh g−1 at 0.1 C under ‐20 °C. After 100 cycles at 0.2 C, the capacity decreases from 1462.3 to 1250.1 mAh g−1. Notably, even under ‐40 °C at 0.1 C, the initial discharge capacity of Li2S6/FeCoNi@CNFs still reaches 1202.8 mAh g−1. After 100 cycles at 0.2 C, the capacity retention rate is 50%. This work has important implications for the development of low‐temperature Li‐S batteries.
A self‐supporting 3D porous film with in situ growth of FeCoNi alloy nanoparticles is designed. FeCoNi medium‐entropy‐alloy as an efficient catalyst to prevent polysulfides accumulate, accelerate kinetics, and enhance adsorption‐conversion ability at low temperature. The results show that lithium‐sulfur battery has excellent low‐temperature performance. After 100 cycles under −20 °C and 0.2 C, the capacity can reach 1250.1 mAh g‐1.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202205525</identifier><identifier>PMID: 36433827</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carbon fibers ; Corrosion resistance ; Cotton ; Discharge ; Entropy ; FeCoNi nanoparticles ; Lithium ; Lithium sulfur batteries ; Li‐S batteries ; Low temperature ; low temperatures ; Mechanical properties ; Medium entropy alloys ; medium‐entropy‐alloy ; Nanofibers ; Nanoparticles ; Nanotechnology ; Performance evaluation ; Wetting</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-02, Vol.19 (5), p.e2205525-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3735-2b04e925224220717cd6bf8f0adbc3dc05b043649bc4c4b279b7d10269de234a3</citedby><cites>FETCH-LOGICAL-c3735-2b04e925224220717cd6bf8f0adbc3dc05b043649bc4c4b279b7d10269de234a3</cites><orcidid>0000-0003-0598-8452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202205525$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202205525$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36433827$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pang, Xiaowan</creatorcontrib><creatorcontrib>Geng, Haitao</creatorcontrib><creatorcontrib>Dong, Shaowen</creatorcontrib><creatorcontrib>An, Baigang</creatorcontrib><creatorcontrib>Zheng, Shumin</creatorcontrib><creatorcontrib>Wang, Bao</creatorcontrib><title>Medium‐Entropy‐Alloy FeCoNi Enables Lithium–Sulfur Batteries with Superb Low‐Temperature Performance</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Lithium‐sulfur battery suffers from sluggish kinetics at low temperatures, resulting in serious polarization and reduced capacity. Here, this work introduces medium‐entropy‐alloy FeCoNi as catalysts and carbon nanofibers (CNFs) as hosts. FeCoNi nanoparticles are in suit synthesized in cotton‐derived CNFs. FeCoNi with atomic‐level mixing of each element can effectively modulate lithium polysulfides (LiPSs), multiple components making them promising to catalyze more LiPSs species. The higher configurational entropy endows FeCoNi@CNFs with extraordinary electrochemical activity, corrosion resistance, and mechanical properties. The fractal structure of CNFs provides a large specific surface area, leaving room for volume expansion and Li2S accumulation, facilitating electrolyte wetting. The unique 3D conductive network structure can suppress the shuttle effect by physicochemical adsorption of LiPSs. This work systematically evaluates the performance of the obtained Li2S6/FeCoNi@CNFs electrode. The initial discharge capacity of Li2S6/FeCoNi@CNFs reaches 1670.8 mAh g−1 at 0.1 C under ‐20 °C. After 100 cycles at 0.2 C, the capacity decreases from 1462.3 to 1250.1 mAh g−1. Notably, even under ‐40 °C at 0.1 C, the initial discharge capacity of Li2S6/FeCoNi@CNFs still reaches 1202.8 mAh g−1. After 100 cycles at 0.2 C, the capacity retention rate is 50%. This work has important implications for the development of low‐temperature Li‐S batteries.
A self‐supporting 3D porous film with in situ growth of FeCoNi alloy nanoparticles is designed. FeCoNi medium‐entropy‐alloy as an efficient catalyst to prevent polysulfides accumulate, accelerate kinetics, and enhance adsorption‐conversion ability at low temperature. The results show that lithium‐sulfur battery has excellent low‐temperature performance. After 100 cycles under −20 °C and 0.2 C, the capacity can reach 1250.1 mAh g‐1.</description><subject>Carbon fibers</subject><subject>Corrosion resistance</subject><subject>Cotton</subject><subject>Discharge</subject><subject>Entropy</subject><subject>FeCoNi nanoparticles</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Li‐S batteries</subject><subject>Low temperature</subject><subject>low temperatures</subject><subject>Mechanical properties</subject><subject>Medium entropy alloys</subject><subject>medium‐entropy‐alloy</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Performance evaluation</subject><subject>Wetting</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkc9O3DAQh60KVP601x6rSFx62cUeO_HmCKsFKgVaaek5sp2JGuTEWzvWam99BCTekCfBsHQrceHksebzpxn_CPnC6JRRCqeht3YKFIDmOeQfyCErGJ8UMyj3djWjB-QohDtKOQMhP5IDXgjOZyAPib3Gpov949_7xTB6t9qk6sxat8kucO5uumwxKG0xZFU3_n4BH5bRttFn52oc0XeptU6tbBlX6HVWuXUy3GKfbmqMHrOf6FvnezUY_ET2W2UDfn49j8mvi8Xt_GpS_bj8Pj-rJoZLnk9AU4El5AAi7SWZNE2h21lLVaMNbwzNE5BWKLURRmiQpZYNo1CUDQIXih-Tb1vvyrs_EcNY910waK0a0MVQgxQ0pzIXkNCTN-idi35I0yVKMg7AZzJR0y1lvAvBY1uvfNcrv6kZrZ9zqJ9zqHc5pAdfX7VR99js8H8fn4ByC6w7i5t3dPXyuqr-y58AMiqYjw</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Pang, Xiaowan</creator><creator>Geng, Haitao</creator><creator>Dong, Shaowen</creator><creator>An, Baigang</creator><creator>Zheng, Shumin</creator><creator>Wang, Bao</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0598-8452</orcidid></search><sort><creationdate>20230201</creationdate><title>Medium‐Entropy‐Alloy FeCoNi Enables Lithium–Sulfur Batteries with Superb Low‐Temperature Performance</title><author>Pang, Xiaowan ; Geng, Haitao ; Dong, Shaowen ; An, Baigang ; Zheng, Shumin ; Wang, Bao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3735-2b04e925224220717cd6bf8f0adbc3dc05b043649bc4c4b279b7d10269de234a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon fibers</topic><topic>Corrosion resistance</topic><topic>Cotton</topic><topic>Discharge</topic><topic>Entropy</topic><topic>FeCoNi nanoparticles</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Li‐S batteries</topic><topic>Low temperature</topic><topic>low temperatures</topic><topic>Mechanical properties</topic><topic>Medium entropy alloys</topic><topic>medium‐entropy‐alloy</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Performance evaluation</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Xiaowan</creatorcontrib><creatorcontrib>Geng, Haitao</creatorcontrib><creatorcontrib>Dong, Shaowen</creatorcontrib><creatorcontrib>An, Baigang</creatorcontrib><creatorcontrib>Zheng, Shumin</creatorcontrib><creatorcontrib>Wang, Bao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Xiaowan</au><au>Geng, Haitao</au><au>Dong, Shaowen</au><au>An, Baigang</au><au>Zheng, Shumin</au><au>Wang, Bao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Medium‐Entropy‐Alloy FeCoNi Enables Lithium–Sulfur Batteries with Superb Low‐Temperature Performance</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>19</volume><issue>5</issue><spage>e2205525</spage><epage>n/a</epage><pages>e2205525-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Lithium‐sulfur battery suffers from sluggish kinetics at low temperatures, resulting in serious polarization and reduced capacity. Here, this work introduces medium‐entropy‐alloy FeCoNi as catalysts and carbon nanofibers (CNFs) as hosts. FeCoNi nanoparticles are in suit synthesized in cotton‐derived CNFs. FeCoNi with atomic‐level mixing of each element can effectively modulate lithium polysulfides (LiPSs), multiple components making them promising to catalyze more LiPSs species. The higher configurational entropy endows FeCoNi@CNFs with extraordinary electrochemical activity, corrosion resistance, and mechanical properties. The fractal structure of CNFs provides a large specific surface area, leaving room for volume expansion and Li2S accumulation, facilitating electrolyte wetting. The unique 3D conductive network structure can suppress the shuttle effect by physicochemical adsorption of LiPSs. This work systematically evaluates the performance of the obtained Li2S6/FeCoNi@CNFs electrode. The initial discharge capacity of Li2S6/FeCoNi@CNFs reaches 1670.8 mAh g−1 at 0.1 C under ‐20 °C. After 100 cycles at 0.2 C, the capacity decreases from 1462.3 to 1250.1 mAh g−1. Notably, even under ‐40 °C at 0.1 C, the initial discharge capacity of Li2S6/FeCoNi@CNFs still reaches 1202.8 mAh g−1. After 100 cycles at 0.2 C, the capacity retention rate is 50%. This work has important implications for the development of low‐temperature Li‐S batteries.
A self‐supporting 3D porous film with in situ growth of FeCoNi alloy nanoparticles is designed. FeCoNi medium‐entropy‐alloy as an efficient catalyst to prevent polysulfides accumulate, accelerate kinetics, and enhance adsorption‐conversion ability at low temperature. The results show that lithium‐sulfur battery has excellent low‐temperature performance. After 100 cycles under −20 °C and 0.2 C, the capacity can reach 1250.1 mAh g‐1.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36433827</pmid><doi>10.1002/smll.202205525</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0598-8452</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2023-02, Vol.19 (5), p.e2205525-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2740507542 |
source | Wiley Journals |
subjects | Carbon fibers Corrosion resistance Cotton Discharge Entropy FeCoNi nanoparticles Lithium Lithium sulfur batteries Li‐S batteries Low temperature low temperatures Mechanical properties Medium entropy alloys medium‐entropy‐alloy Nanofibers Nanoparticles Nanotechnology Performance evaluation Wetting |
title | Medium‐Entropy‐Alloy FeCoNi Enables Lithium–Sulfur Batteries with Superb Low‐Temperature Performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A29%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Medium%E2%80%90Entropy%E2%80%90Alloy%20FeCoNi%20Enables%20Lithium%E2%80%93Sulfur%20Batteries%20with%20Superb%20Low%E2%80%90Temperature%20Performance&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Pang,%20Xiaowan&rft.date=2023-02-01&rft.volume=19&rft.issue=5&rft.spage=e2205525&rft.epage=n/a&rft.pages=e2205525-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202205525&rft_dat=%3Cproquest_cross%3E2740507542%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771322387&rft_id=info:pmid/36433827&rfr_iscdi=true |