Medium‐Entropy‐Alloy FeCoNi Enables Lithium–Sulfur Batteries with Superb Low‐Temperature Performance

Lithium‐sulfur battery suffers from sluggish kinetics at low temperatures, resulting in serious polarization and reduced capacity. Here, this work introduces medium‐entropy‐alloy FeCoNi as catalysts and carbon nanofibers (CNFs) as hosts. FeCoNi nanoparticles are in suit synthesized in cotton‐derived...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-02, Vol.19 (5), p.e2205525-n/a
Hauptverfasser: Pang, Xiaowan, Geng, Haitao, Dong, Shaowen, An, Baigang, Zheng, Shumin, Wang, Bao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page e2205525
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Pang, Xiaowan
Geng, Haitao
Dong, Shaowen
An, Baigang
Zheng, Shumin
Wang, Bao
description Lithium‐sulfur battery suffers from sluggish kinetics at low temperatures, resulting in serious polarization and reduced capacity. Here, this work introduces medium‐entropy‐alloy FeCoNi as catalysts and carbon nanofibers (CNFs) as hosts. FeCoNi nanoparticles are in suit synthesized in cotton‐derived CNFs. FeCoNi with atomic‐level mixing of each element can effectively modulate lithium polysulfides (LiPSs), multiple components making them promising to catalyze more LiPSs species. The higher configurational entropy endows FeCoNi@CNFs with extraordinary electrochemical activity, corrosion resistance, and mechanical properties. The fractal structure of CNFs provides a large specific surface area, leaving room for volume expansion and Li2S accumulation, facilitating electrolyte wetting. The unique 3D conductive network structure can suppress the shuttle effect by physicochemical adsorption of LiPSs. This work systematically evaluates the performance of the obtained Li2S6/FeCoNi@CNFs electrode. The initial discharge capacity of Li2S6/FeCoNi@CNFs reaches 1670.8 mAh g−1 at 0.1 C under ‐20 °C. After 100 cycles at 0.2 C, the capacity decreases from 1462.3 to 1250.1 mAh g−1. Notably, even under ‐40 °C at 0.1 C, the initial discharge capacity of Li2S6/FeCoNi@CNFs still reaches 1202.8 mAh g−1. After 100 cycles at 0.2 C, the capacity retention rate is 50%. This work has important implications for the development of low‐temperature Li‐S batteries. A self‐supporting 3D porous film with in situ growth of FeCoNi alloy nanoparticles is designed. FeCoNi medium‐entropy‐alloy as an efficient catalyst to prevent polysulfides accumulate, accelerate kinetics, and enhance adsorption‐conversion ability at low temperature. The results show that lithium‐sulfur battery has excellent low‐temperature performance. After 100 cycles under −20 °C and 0.2 C, the capacity can reach 1250.1 mAh g‐1.
doi_str_mv 10.1002/smll.202205525
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2740507542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2740507542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3735-2b04e925224220717cd6bf8f0adbc3dc05b043649bc4c4b279b7d10269de234a3</originalsourceid><addsrcrecordid>eNqFkc9O3DAQh60KVP601x6rSFx62cUeO_HmCKsFKgVaaek5sp2JGuTEWzvWam99BCTekCfBsHQrceHksebzpxn_CPnC6JRRCqeht3YKFIDmOeQfyCErGJ8UMyj3djWjB-QohDtKOQMhP5IDXgjOZyAPib3Gpov949_7xTB6t9qk6sxat8kucO5uumwxKG0xZFU3_n4BH5bRttFn52oc0XeptU6tbBlX6HVWuXUy3GKfbmqMHrOf6FvnezUY_ET2W2UDfn49j8mvi8Xt_GpS_bj8Pj-rJoZLnk9AU4El5AAi7SWZNE2h21lLVaMNbwzNE5BWKLURRmiQpZYNo1CUDQIXih-Tb1vvyrs_EcNY910waK0a0MVQgxQ0pzIXkNCTN-idi35I0yVKMg7AZzJR0y1lvAvBY1uvfNcrv6kZrZ9zqJ9zqHc5pAdfX7VR99js8H8fn4ByC6w7i5t3dPXyuqr-y58AMiqYjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771322387</pqid></control><display><type>article</type><title>Medium‐Entropy‐Alloy FeCoNi Enables Lithium–Sulfur Batteries with Superb Low‐Temperature Performance</title><source>Wiley Journals</source><creator>Pang, Xiaowan ; Geng, Haitao ; Dong, Shaowen ; An, Baigang ; Zheng, Shumin ; Wang, Bao</creator><creatorcontrib>Pang, Xiaowan ; Geng, Haitao ; Dong, Shaowen ; An, Baigang ; Zheng, Shumin ; Wang, Bao</creatorcontrib><description>Lithium‐sulfur battery suffers from sluggish kinetics at low temperatures, resulting in serious polarization and reduced capacity. Here, this work introduces medium‐entropy‐alloy FeCoNi as catalysts and carbon nanofibers (CNFs) as hosts. FeCoNi nanoparticles are in suit synthesized in cotton‐derived CNFs. FeCoNi with atomic‐level mixing of each element can effectively modulate lithium polysulfides (LiPSs), multiple components making them promising to catalyze more LiPSs species. The higher configurational entropy endows FeCoNi@CNFs with extraordinary electrochemical activity, corrosion resistance, and mechanical properties. The fractal structure of CNFs provides a large specific surface area, leaving room for volume expansion and Li2S accumulation, facilitating electrolyte wetting. The unique 3D conductive network structure can suppress the shuttle effect by physicochemical adsorption of LiPSs. This work systematically evaluates the performance of the obtained Li2S6/FeCoNi@CNFs electrode. The initial discharge capacity of Li2S6/FeCoNi@CNFs reaches 1670.8 mAh g−1 at 0.1 C under ‐20 °C. After 100 cycles at 0.2 C, the capacity decreases from 1462.3 to 1250.1 mAh g−1. Notably, even under ‐40 °C at 0.1 C, the initial discharge capacity of Li2S6/FeCoNi@CNFs still reaches 1202.8 mAh g−1. After 100 cycles at 0.2 C, the capacity retention rate is 50%. This work has important implications for the development of low‐temperature Li‐S batteries. A self‐supporting 3D porous film with in situ growth of FeCoNi alloy nanoparticles is designed. FeCoNi medium‐entropy‐alloy as an efficient catalyst to prevent polysulfides accumulate, accelerate kinetics, and enhance adsorption‐conversion ability at low temperature. The results show that lithium‐sulfur battery has excellent low‐temperature performance. After 100 cycles under −20 °C and 0.2 C, the capacity can reach 1250.1 mAh g‐1.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202205525</identifier><identifier>PMID: 36433827</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carbon fibers ; Corrosion resistance ; Cotton ; Discharge ; Entropy ; FeCoNi nanoparticles ; Lithium ; Lithium sulfur batteries ; Li‐S batteries ; Low temperature ; low temperatures ; Mechanical properties ; Medium entropy alloys ; medium‐entropy‐alloy ; Nanofibers ; Nanoparticles ; Nanotechnology ; Performance evaluation ; Wetting</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-02, Vol.19 (5), p.e2205525-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3735-2b04e925224220717cd6bf8f0adbc3dc05b043649bc4c4b279b7d10269de234a3</citedby><cites>FETCH-LOGICAL-c3735-2b04e925224220717cd6bf8f0adbc3dc05b043649bc4c4b279b7d10269de234a3</cites><orcidid>0000-0003-0598-8452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202205525$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202205525$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36433827$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pang, Xiaowan</creatorcontrib><creatorcontrib>Geng, Haitao</creatorcontrib><creatorcontrib>Dong, Shaowen</creatorcontrib><creatorcontrib>An, Baigang</creatorcontrib><creatorcontrib>Zheng, Shumin</creatorcontrib><creatorcontrib>Wang, Bao</creatorcontrib><title>Medium‐Entropy‐Alloy FeCoNi Enables Lithium–Sulfur Batteries with Superb Low‐Temperature Performance</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Lithium‐sulfur battery suffers from sluggish kinetics at low temperatures, resulting in serious polarization and reduced capacity. Here, this work introduces medium‐entropy‐alloy FeCoNi as catalysts and carbon nanofibers (CNFs) as hosts. FeCoNi nanoparticles are in suit synthesized in cotton‐derived CNFs. FeCoNi with atomic‐level mixing of each element can effectively modulate lithium polysulfides (LiPSs), multiple components making them promising to catalyze more LiPSs species. The higher configurational entropy endows FeCoNi@CNFs with extraordinary electrochemical activity, corrosion resistance, and mechanical properties. The fractal structure of CNFs provides a large specific surface area, leaving room for volume expansion and Li2S accumulation, facilitating electrolyte wetting. The unique 3D conductive network structure can suppress the shuttle effect by physicochemical adsorption of LiPSs. This work systematically evaluates the performance of the obtained Li2S6/FeCoNi@CNFs electrode. The initial discharge capacity of Li2S6/FeCoNi@CNFs reaches 1670.8 mAh g−1 at 0.1 C under ‐20 °C. After 100 cycles at 0.2 C, the capacity decreases from 1462.3 to 1250.1 mAh g−1. Notably, even under ‐40 °C at 0.1 C, the initial discharge capacity of Li2S6/FeCoNi@CNFs still reaches 1202.8 mAh g−1. After 100 cycles at 0.2 C, the capacity retention rate is 50%. This work has important implications for the development of low‐temperature Li‐S batteries. A self‐supporting 3D porous film with in situ growth of FeCoNi alloy nanoparticles is designed. FeCoNi medium‐entropy‐alloy as an efficient catalyst to prevent polysulfides accumulate, accelerate kinetics, and enhance adsorption‐conversion ability at low temperature. The results show that lithium‐sulfur battery has excellent low‐temperature performance. After 100 cycles under −20 °C and 0.2 C, the capacity can reach 1250.1 mAh g‐1.</description><subject>Carbon fibers</subject><subject>Corrosion resistance</subject><subject>Cotton</subject><subject>Discharge</subject><subject>Entropy</subject><subject>FeCoNi nanoparticles</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Li‐S batteries</subject><subject>Low temperature</subject><subject>low temperatures</subject><subject>Mechanical properties</subject><subject>Medium entropy alloys</subject><subject>medium‐entropy‐alloy</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Performance evaluation</subject><subject>Wetting</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkc9O3DAQh60KVP601x6rSFx62cUeO_HmCKsFKgVaaek5sp2JGuTEWzvWam99BCTekCfBsHQrceHksebzpxn_CPnC6JRRCqeht3YKFIDmOeQfyCErGJ8UMyj3djWjB-QohDtKOQMhP5IDXgjOZyAPib3Gpov949_7xTB6t9qk6sxat8kucO5uumwxKG0xZFU3_n4BH5bRttFn52oc0XeptU6tbBlX6HVWuXUy3GKfbmqMHrOf6FvnezUY_ET2W2UDfn49j8mvi8Xt_GpS_bj8Pj-rJoZLnk9AU4El5AAi7SWZNE2h21lLVaMNbwzNE5BWKLURRmiQpZYNo1CUDQIXih-Tb1vvyrs_EcNY910waK0a0MVQgxQ0pzIXkNCTN-idi35I0yVKMg7AZzJR0y1lvAvBY1uvfNcrv6kZrZ9zqJ9zqHc5pAdfX7VR99js8H8fn4ByC6w7i5t3dPXyuqr-y58AMiqYjw</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Pang, Xiaowan</creator><creator>Geng, Haitao</creator><creator>Dong, Shaowen</creator><creator>An, Baigang</creator><creator>Zheng, Shumin</creator><creator>Wang, Bao</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0598-8452</orcidid></search><sort><creationdate>20230201</creationdate><title>Medium‐Entropy‐Alloy FeCoNi Enables Lithium–Sulfur Batteries with Superb Low‐Temperature Performance</title><author>Pang, Xiaowan ; Geng, Haitao ; Dong, Shaowen ; An, Baigang ; Zheng, Shumin ; Wang, Bao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3735-2b04e925224220717cd6bf8f0adbc3dc05b043649bc4c4b279b7d10269de234a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon fibers</topic><topic>Corrosion resistance</topic><topic>Cotton</topic><topic>Discharge</topic><topic>Entropy</topic><topic>FeCoNi nanoparticles</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Li‐S batteries</topic><topic>Low temperature</topic><topic>low temperatures</topic><topic>Mechanical properties</topic><topic>Medium entropy alloys</topic><topic>medium‐entropy‐alloy</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Performance evaluation</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Xiaowan</creatorcontrib><creatorcontrib>Geng, Haitao</creatorcontrib><creatorcontrib>Dong, Shaowen</creatorcontrib><creatorcontrib>An, Baigang</creatorcontrib><creatorcontrib>Zheng, Shumin</creatorcontrib><creatorcontrib>Wang, Bao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Xiaowan</au><au>Geng, Haitao</au><au>Dong, Shaowen</au><au>An, Baigang</au><au>Zheng, Shumin</au><au>Wang, Bao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Medium‐Entropy‐Alloy FeCoNi Enables Lithium–Sulfur Batteries with Superb Low‐Temperature Performance</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>19</volume><issue>5</issue><spage>e2205525</spage><epage>n/a</epage><pages>e2205525-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Lithium‐sulfur battery suffers from sluggish kinetics at low temperatures, resulting in serious polarization and reduced capacity. Here, this work introduces medium‐entropy‐alloy FeCoNi as catalysts and carbon nanofibers (CNFs) as hosts. FeCoNi nanoparticles are in suit synthesized in cotton‐derived CNFs. FeCoNi with atomic‐level mixing of each element can effectively modulate lithium polysulfides (LiPSs), multiple components making them promising to catalyze more LiPSs species. The higher configurational entropy endows FeCoNi@CNFs with extraordinary electrochemical activity, corrosion resistance, and mechanical properties. The fractal structure of CNFs provides a large specific surface area, leaving room for volume expansion and Li2S accumulation, facilitating electrolyte wetting. The unique 3D conductive network structure can suppress the shuttle effect by physicochemical adsorption of LiPSs. This work systematically evaluates the performance of the obtained Li2S6/FeCoNi@CNFs electrode. The initial discharge capacity of Li2S6/FeCoNi@CNFs reaches 1670.8 mAh g−1 at 0.1 C under ‐20 °C. After 100 cycles at 0.2 C, the capacity decreases from 1462.3 to 1250.1 mAh g−1. Notably, even under ‐40 °C at 0.1 C, the initial discharge capacity of Li2S6/FeCoNi@CNFs still reaches 1202.8 mAh g−1. After 100 cycles at 0.2 C, the capacity retention rate is 50%. This work has important implications for the development of low‐temperature Li‐S batteries. A self‐supporting 3D porous film with in situ growth of FeCoNi alloy nanoparticles is designed. FeCoNi medium‐entropy‐alloy as an efficient catalyst to prevent polysulfides accumulate, accelerate kinetics, and enhance adsorption‐conversion ability at low temperature. The results show that lithium‐sulfur battery has excellent low‐temperature performance. After 100 cycles under −20 °C and 0.2 C, the capacity can reach 1250.1 mAh g‐1.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36433827</pmid><doi>10.1002/smll.202205525</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0598-8452</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2023-02, Vol.19 (5), p.e2205525-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2740507542
source Wiley Journals
subjects Carbon fibers
Corrosion resistance
Cotton
Discharge
Entropy
FeCoNi nanoparticles
Lithium
Lithium sulfur batteries
Li‐S batteries
Low temperature
low temperatures
Mechanical properties
Medium entropy alloys
medium‐entropy‐alloy
Nanofibers
Nanoparticles
Nanotechnology
Performance evaluation
Wetting
title Medium‐Entropy‐Alloy FeCoNi Enables Lithium–Sulfur Batteries with Superb Low‐Temperature Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A29%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Medium%E2%80%90Entropy%E2%80%90Alloy%20FeCoNi%20Enables%20Lithium%E2%80%93Sulfur%20Batteries%20with%20Superb%20Low%E2%80%90Temperature%20Performance&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Pang,%20Xiaowan&rft.date=2023-02-01&rft.volume=19&rft.issue=5&rft.spage=e2205525&rft.epage=n/a&rft.pages=e2205525-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202205525&rft_dat=%3Cproquest_cross%3E2740507542%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771322387&rft_id=info:pmid/36433827&rfr_iscdi=true