Bayesian additive regression trees for multivariate skewed responses

This paper introduces a nonparametric regression approach for univariate and multivariate skewed responses using Bayesian additive regression trees (BART). Existing BART methods use ensembles of decision trees to model a mean function, and have become popular recently due to their high prediction ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2023-02, Vol.42 (3), p.246-263
Hauptverfasser: Um, Seungha, Linero, Antonio R., Sinha, Debajyoti, Bandyopadhyay, Dipankar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 263
container_issue 3
container_start_page 246
container_title Statistics in medicine
container_volume 42
creator Um, Seungha
Linero, Antonio R.
Sinha, Debajyoti
Bandyopadhyay, Dipankar
description This paper introduces a nonparametric regression approach for univariate and multivariate skewed responses using Bayesian additive regression trees (BART). Existing BART methods use ensembles of decision trees to model a mean function, and have become popular recently due to their high prediction accuracy and ease of use. The usual assumption of a univariate Gaussian error distribution, however, is restrictive in many biomedical applications. Motivated by an oral health study, we provide a useful extension of BART, the skewBART model, to address this problem. We then extend skewBART to allow for multivariate responses, with information shared across the decision trees associated with different responses within the same subject. The methodology accommodates within‐subject association, and allows varying skewness parameters for the varying multivariate responses. We illustrate the benefits of our multivariate skewBART proposal over existing alternatives via simulation studies and application to the oral health dataset with bivariate highly skewed responses. Our methodology is implementable via the R package skewBART, available on GitHub.
doi_str_mv 10.1002/sim.9613
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2740506366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766626375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2793-47a5a30283a4e3e40bf7bc0295a283bafe52c007f8f2e13ab7eb8d5dbc12aefe3</originalsourceid><addsrcrecordid>eNp1kEtLw0AQgBdRbK2Cv0ACXrxE95HdbY5aX4WKB_UcNsmsbM2j7iSW_nu3tioIngZmPj6Gj5BjRs8ZpfwCXX2eKiZ2yJDRVMeUy_EuGVKudaw0kwNygDinlDHJ9T4ZCJUIoUQ6JNdXZgXoTBOZsnSd-4DIw6sHRNc2UecBMLKtj-q-CkfjnekgwjdYQhlAXLQNAh6SPWsqhKPtHJGX25vnyX08e7ybTi5nccF1KuJEG2kE5WNhEhCQ0NzqvKA8lSbscmNB8oJSbceWAxMm15CPS1nmBeMGLIgROdt4F7597wG7rHZYQFWZBtoeM64TKqkSSgX09A86b3vfhO8CpZTiSmj5Kyx8i-jBZgvvauNXGaPZumwWymbrsgE92Qr7vIbyB_xOGYB4AyxdBat_RdnT9OFL-AmBFYJ6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766626375</pqid></control><display><type>article</type><title>Bayesian additive regression trees for multivariate skewed responses</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Um, Seungha ; Linero, Antonio R. ; Sinha, Debajyoti ; Bandyopadhyay, Dipankar</creator><creatorcontrib>Um, Seungha ; Linero, Antonio R. ; Sinha, Debajyoti ; Bandyopadhyay, Dipankar</creatorcontrib><description>This paper introduces a nonparametric regression approach for univariate and multivariate skewed responses using Bayesian additive regression trees (BART). Existing BART methods use ensembles of decision trees to model a mean function, and have become popular recently due to their high prediction accuracy and ease of use. The usual assumption of a univariate Gaussian error distribution, however, is restrictive in many biomedical applications. Motivated by an oral health study, we provide a useful extension of BART, the skewBART model, to address this problem. We then extend skewBART to allow for multivariate responses, with information shared across the decision trees associated with different responses within the same subject. The methodology accommodates within‐subject association, and allows varying skewness parameters for the varying multivariate responses. We illustrate the benefits of our multivariate skewBART proposal over existing alternatives via simulation studies and application to the oral health dataset with bivariate highly skewed responses. Our methodology is implementable via the R package skewBART, available on GitHub.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.9613</identifier><identifier>PMID: 36433639</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Bayes Theorem ; Bayesian nonparametrics ; Computer Simulation ; Decision trees ; ensembling methods ; Humans ; Models, Statistical ; nonlinear regression ; Oral hygiene ; skew‐normal</subject><ispartof>Statistics in medicine, 2023-02, Vol.42 (3), p.246-263</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2793-47a5a30283a4e3e40bf7bc0295a283bafe52c007f8f2e13ab7eb8d5dbc12aefe3</citedby><cites>FETCH-LOGICAL-c2793-47a5a30283a4e3e40bf7bc0295a283bafe52c007f8f2e13ab7eb8d5dbc12aefe3</cites><orcidid>0000-0002-9531-5667 ; 0000-0002-3728-2852 ; 0000-0001-5421-1725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.9613$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.9613$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36433639$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Um, Seungha</creatorcontrib><creatorcontrib>Linero, Antonio R.</creatorcontrib><creatorcontrib>Sinha, Debajyoti</creatorcontrib><creatorcontrib>Bandyopadhyay, Dipankar</creatorcontrib><title>Bayesian additive regression trees for multivariate skewed responses</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>This paper introduces a nonparametric regression approach for univariate and multivariate skewed responses using Bayesian additive regression trees (BART). Existing BART methods use ensembles of decision trees to model a mean function, and have become popular recently due to their high prediction accuracy and ease of use. The usual assumption of a univariate Gaussian error distribution, however, is restrictive in many biomedical applications. Motivated by an oral health study, we provide a useful extension of BART, the skewBART model, to address this problem. We then extend skewBART to allow for multivariate responses, with information shared across the decision trees associated with different responses within the same subject. The methodology accommodates within‐subject association, and allows varying skewness parameters for the varying multivariate responses. We illustrate the benefits of our multivariate skewBART proposal over existing alternatives via simulation studies and application to the oral health dataset with bivariate highly skewed responses. Our methodology is implementable via the R package skewBART, available on GitHub.</description><subject>Bayes Theorem</subject><subject>Bayesian nonparametrics</subject><subject>Computer Simulation</subject><subject>Decision trees</subject><subject>ensembling methods</subject><subject>Humans</subject><subject>Models, Statistical</subject><subject>nonlinear regression</subject><subject>Oral hygiene</subject><subject>skew‐normal</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtLw0AQgBdRbK2Cv0ACXrxE95HdbY5aX4WKB_UcNsmsbM2j7iSW_nu3tioIngZmPj6Gj5BjRs8ZpfwCXX2eKiZ2yJDRVMeUy_EuGVKudaw0kwNygDinlDHJ9T4ZCJUIoUQ6JNdXZgXoTBOZsnSd-4DIw6sHRNc2UecBMLKtj-q-CkfjnekgwjdYQhlAXLQNAh6SPWsqhKPtHJGX25vnyX08e7ybTi5nccF1KuJEG2kE5WNhEhCQ0NzqvKA8lSbscmNB8oJSbceWAxMm15CPS1nmBeMGLIgROdt4F7597wG7rHZYQFWZBtoeM64TKqkSSgX09A86b3vfhO8CpZTiSmj5Kyx8i-jBZgvvauNXGaPZumwWymbrsgE92Qr7vIbyB_xOGYB4AyxdBat_RdnT9OFL-AmBFYJ6</recordid><startdate>20230210</startdate><enddate>20230210</enddate><creator>Um, Seungha</creator><creator>Linero, Antonio R.</creator><creator>Sinha, Debajyoti</creator><creator>Bandyopadhyay, Dipankar</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9531-5667</orcidid><orcidid>https://orcid.org/0000-0002-3728-2852</orcidid><orcidid>https://orcid.org/0000-0001-5421-1725</orcidid></search><sort><creationdate>20230210</creationdate><title>Bayesian additive regression trees for multivariate skewed responses</title><author>Um, Seungha ; Linero, Antonio R. ; Sinha, Debajyoti ; Bandyopadhyay, Dipankar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2793-47a5a30283a4e3e40bf7bc0295a283bafe52c007f8f2e13ab7eb8d5dbc12aefe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayes Theorem</topic><topic>Bayesian nonparametrics</topic><topic>Computer Simulation</topic><topic>Decision trees</topic><topic>ensembling methods</topic><topic>Humans</topic><topic>Models, Statistical</topic><topic>nonlinear regression</topic><topic>Oral hygiene</topic><topic>skew‐normal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Um, Seungha</creatorcontrib><creatorcontrib>Linero, Antonio R.</creatorcontrib><creatorcontrib>Sinha, Debajyoti</creatorcontrib><creatorcontrib>Bandyopadhyay, Dipankar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Um, Seungha</au><au>Linero, Antonio R.</au><au>Sinha, Debajyoti</au><au>Bandyopadhyay, Dipankar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian additive regression trees for multivariate skewed responses</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2023-02-10</date><risdate>2023</risdate><volume>42</volume><issue>3</issue><spage>246</spage><epage>263</epage><pages>246-263</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>This paper introduces a nonparametric regression approach for univariate and multivariate skewed responses using Bayesian additive regression trees (BART). Existing BART methods use ensembles of decision trees to model a mean function, and have become popular recently due to their high prediction accuracy and ease of use. The usual assumption of a univariate Gaussian error distribution, however, is restrictive in many biomedical applications. Motivated by an oral health study, we provide a useful extension of BART, the skewBART model, to address this problem. We then extend skewBART to allow for multivariate responses, with information shared across the decision trees associated with different responses within the same subject. The methodology accommodates within‐subject association, and allows varying skewness parameters for the varying multivariate responses. We illustrate the benefits of our multivariate skewBART proposal over existing alternatives via simulation studies and application to the oral health dataset with bivariate highly skewed responses. Our methodology is implementable via the R package skewBART, available on GitHub.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36433639</pmid><doi>10.1002/sim.9613</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9531-5667</orcidid><orcidid>https://orcid.org/0000-0002-3728-2852</orcidid><orcidid>https://orcid.org/0000-0001-5421-1725</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2023-02, Vol.42 (3), p.246-263
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_2740506366
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Bayes Theorem
Bayesian nonparametrics
Computer Simulation
Decision trees
ensembling methods
Humans
Models, Statistical
nonlinear regression
Oral hygiene
skew‐normal
title Bayesian additive regression trees for multivariate skewed responses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20additive%20regression%20trees%20for%20multivariate%20skewed%20responses&rft.jtitle=Statistics%20in%20medicine&rft.au=Um,%20Seungha&rft.date=2023-02-10&rft.volume=42&rft.issue=3&rft.spage=246&rft.epage=263&rft.pages=246-263&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.9613&rft_dat=%3Cproquest_cross%3E2766626375%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766626375&rft_id=info:pmid/36433639&rfr_iscdi=true