Bayesian additive regression trees for multivariate skewed responses
This paper introduces a nonparametric regression approach for univariate and multivariate skewed responses using Bayesian additive regression trees (BART). Existing BART methods use ensembles of decision trees to model a mean function, and have become popular recently due to their high prediction ac...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2023-02, Vol.42 (3), p.246-263 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 263 |
---|---|
container_issue | 3 |
container_start_page | 246 |
container_title | Statistics in medicine |
container_volume | 42 |
creator | Um, Seungha Linero, Antonio R. Sinha, Debajyoti Bandyopadhyay, Dipankar |
description | This paper introduces a nonparametric regression approach for univariate and multivariate skewed responses using Bayesian additive regression trees (BART). Existing BART methods use ensembles of decision trees to model a mean function, and have become popular recently due to their high prediction accuracy and ease of use. The usual assumption of a univariate Gaussian error distribution, however, is restrictive in many biomedical applications. Motivated by an oral health study, we provide a useful extension of BART, the skewBART model, to address this problem. We then extend skewBART to allow for multivariate responses, with information shared across the decision trees associated with different responses within the same subject. The methodology accommodates within‐subject association, and allows varying skewness parameters for the varying multivariate responses. We illustrate the benefits of our multivariate skewBART proposal over existing alternatives via simulation studies and application to the oral health dataset with bivariate highly skewed responses. Our methodology is implementable via the R package skewBART, available on GitHub. |
doi_str_mv | 10.1002/sim.9613 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2740506366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2766626375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2793-47a5a30283a4e3e40bf7bc0295a283bafe52c007f8f2e13ab7eb8d5dbc12aefe3</originalsourceid><addsrcrecordid>eNp1kEtLw0AQgBdRbK2Cv0ACXrxE95HdbY5aX4WKB_UcNsmsbM2j7iSW_nu3tioIngZmPj6Gj5BjRs8ZpfwCXX2eKiZ2yJDRVMeUy_EuGVKudaw0kwNygDinlDHJ9T4ZCJUIoUQ6JNdXZgXoTBOZsnSd-4DIw6sHRNc2UecBMLKtj-q-CkfjnekgwjdYQhlAXLQNAh6SPWsqhKPtHJGX25vnyX08e7ybTi5nccF1KuJEG2kE5WNhEhCQ0NzqvKA8lSbscmNB8oJSbceWAxMm15CPS1nmBeMGLIgROdt4F7597wG7rHZYQFWZBtoeM64TKqkSSgX09A86b3vfhO8CpZTiSmj5Kyx8i-jBZgvvauNXGaPZumwWymbrsgE92Qr7vIbyB_xOGYB4AyxdBat_RdnT9OFL-AmBFYJ6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766626375</pqid></control><display><type>article</type><title>Bayesian additive regression trees for multivariate skewed responses</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Um, Seungha ; Linero, Antonio R. ; Sinha, Debajyoti ; Bandyopadhyay, Dipankar</creator><creatorcontrib>Um, Seungha ; Linero, Antonio R. ; Sinha, Debajyoti ; Bandyopadhyay, Dipankar</creatorcontrib><description>This paper introduces a nonparametric regression approach for univariate and multivariate skewed responses using Bayesian additive regression trees (BART). Existing BART methods use ensembles of decision trees to model a mean function, and have become popular recently due to their high prediction accuracy and ease of use. The usual assumption of a univariate Gaussian error distribution, however, is restrictive in many biomedical applications. Motivated by an oral health study, we provide a useful extension of BART, the skewBART model, to address this problem. We then extend skewBART to allow for multivariate responses, with information shared across the decision trees associated with different responses within the same subject. The methodology accommodates within‐subject association, and allows varying skewness parameters for the varying multivariate responses. We illustrate the benefits of our multivariate skewBART proposal over existing alternatives via simulation studies and application to the oral health dataset with bivariate highly skewed responses. Our methodology is implementable via the R package skewBART, available on GitHub.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.9613</identifier><identifier>PMID: 36433639</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Bayes Theorem ; Bayesian nonparametrics ; Computer Simulation ; Decision trees ; ensembling methods ; Humans ; Models, Statistical ; nonlinear regression ; Oral hygiene ; skew‐normal</subject><ispartof>Statistics in medicine, 2023-02, Vol.42 (3), p.246-263</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2793-47a5a30283a4e3e40bf7bc0295a283bafe52c007f8f2e13ab7eb8d5dbc12aefe3</citedby><cites>FETCH-LOGICAL-c2793-47a5a30283a4e3e40bf7bc0295a283bafe52c007f8f2e13ab7eb8d5dbc12aefe3</cites><orcidid>0000-0002-9531-5667 ; 0000-0002-3728-2852 ; 0000-0001-5421-1725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.9613$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.9613$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36433639$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Um, Seungha</creatorcontrib><creatorcontrib>Linero, Antonio R.</creatorcontrib><creatorcontrib>Sinha, Debajyoti</creatorcontrib><creatorcontrib>Bandyopadhyay, Dipankar</creatorcontrib><title>Bayesian additive regression trees for multivariate skewed responses</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>This paper introduces a nonparametric regression approach for univariate and multivariate skewed responses using Bayesian additive regression trees (BART). Existing BART methods use ensembles of decision trees to model a mean function, and have become popular recently due to their high prediction accuracy and ease of use. The usual assumption of a univariate Gaussian error distribution, however, is restrictive in many biomedical applications. Motivated by an oral health study, we provide a useful extension of BART, the skewBART model, to address this problem. We then extend skewBART to allow for multivariate responses, with information shared across the decision trees associated with different responses within the same subject. The methodology accommodates within‐subject association, and allows varying skewness parameters for the varying multivariate responses. We illustrate the benefits of our multivariate skewBART proposal over existing alternatives via simulation studies and application to the oral health dataset with bivariate highly skewed responses. Our methodology is implementable via the R package skewBART, available on GitHub.</description><subject>Bayes Theorem</subject><subject>Bayesian nonparametrics</subject><subject>Computer Simulation</subject><subject>Decision trees</subject><subject>ensembling methods</subject><subject>Humans</subject><subject>Models, Statistical</subject><subject>nonlinear regression</subject><subject>Oral hygiene</subject><subject>skew‐normal</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtLw0AQgBdRbK2Cv0ACXrxE95HdbY5aX4WKB_UcNsmsbM2j7iSW_nu3tioIngZmPj6Gj5BjRs8ZpfwCXX2eKiZ2yJDRVMeUy_EuGVKudaw0kwNygDinlDHJ9T4ZCJUIoUQ6JNdXZgXoTBOZsnSd-4DIw6sHRNc2UecBMLKtj-q-CkfjnekgwjdYQhlAXLQNAh6SPWsqhKPtHJGX25vnyX08e7ybTi5nccF1KuJEG2kE5WNhEhCQ0NzqvKA8lSbscmNB8oJSbceWAxMm15CPS1nmBeMGLIgROdt4F7597wG7rHZYQFWZBtoeM64TKqkSSgX09A86b3vfhO8CpZTiSmj5Kyx8i-jBZgvvauNXGaPZumwWymbrsgE92Qr7vIbyB_xOGYB4AyxdBat_RdnT9OFL-AmBFYJ6</recordid><startdate>20230210</startdate><enddate>20230210</enddate><creator>Um, Seungha</creator><creator>Linero, Antonio R.</creator><creator>Sinha, Debajyoti</creator><creator>Bandyopadhyay, Dipankar</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9531-5667</orcidid><orcidid>https://orcid.org/0000-0002-3728-2852</orcidid><orcidid>https://orcid.org/0000-0001-5421-1725</orcidid></search><sort><creationdate>20230210</creationdate><title>Bayesian additive regression trees for multivariate skewed responses</title><author>Um, Seungha ; Linero, Antonio R. ; Sinha, Debajyoti ; Bandyopadhyay, Dipankar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2793-47a5a30283a4e3e40bf7bc0295a283bafe52c007f8f2e13ab7eb8d5dbc12aefe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayes Theorem</topic><topic>Bayesian nonparametrics</topic><topic>Computer Simulation</topic><topic>Decision trees</topic><topic>ensembling methods</topic><topic>Humans</topic><topic>Models, Statistical</topic><topic>nonlinear regression</topic><topic>Oral hygiene</topic><topic>skew‐normal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Um, Seungha</creatorcontrib><creatorcontrib>Linero, Antonio R.</creatorcontrib><creatorcontrib>Sinha, Debajyoti</creatorcontrib><creatorcontrib>Bandyopadhyay, Dipankar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Um, Seungha</au><au>Linero, Antonio R.</au><au>Sinha, Debajyoti</au><au>Bandyopadhyay, Dipankar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian additive regression trees for multivariate skewed responses</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2023-02-10</date><risdate>2023</risdate><volume>42</volume><issue>3</issue><spage>246</spage><epage>263</epage><pages>246-263</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>This paper introduces a nonparametric regression approach for univariate and multivariate skewed responses using Bayesian additive regression trees (BART). Existing BART methods use ensembles of decision trees to model a mean function, and have become popular recently due to their high prediction accuracy and ease of use. The usual assumption of a univariate Gaussian error distribution, however, is restrictive in many biomedical applications. Motivated by an oral health study, we provide a useful extension of BART, the skewBART model, to address this problem. We then extend skewBART to allow for multivariate responses, with information shared across the decision trees associated with different responses within the same subject. The methodology accommodates within‐subject association, and allows varying skewness parameters for the varying multivariate responses. We illustrate the benefits of our multivariate skewBART proposal over existing alternatives via simulation studies and application to the oral health dataset with bivariate highly skewed responses. Our methodology is implementable via the R package skewBART, available on GitHub.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>36433639</pmid><doi>10.1002/sim.9613</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9531-5667</orcidid><orcidid>https://orcid.org/0000-0002-3728-2852</orcidid><orcidid>https://orcid.org/0000-0001-5421-1725</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2023-02, Vol.42 (3), p.246-263 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_2740506366 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Bayes Theorem Bayesian nonparametrics Computer Simulation Decision trees ensembling methods Humans Models, Statistical nonlinear regression Oral hygiene skew‐normal |
title | Bayesian additive regression trees for multivariate skewed responses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20additive%20regression%20trees%20for%20multivariate%20skewed%20responses&rft.jtitle=Statistics%20in%20medicine&rft.au=Um,%20Seungha&rft.date=2023-02-10&rft.volume=42&rft.issue=3&rft.spage=246&rft.epage=263&rft.pages=246-263&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.9613&rft_dat=%3Cproquest_cross%3E2766626375%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766626375&rft_id=info:pmid/36433639&rfr_iscdi=true |