The stress triaxiality constraint and the Q-value as a ductile fracture parameter

Ductile fracture of metals occurs as a result of nucleation, growth and coalescence of microscopic voids that initiate at inclusions and second phase particles. The main parameters that influence void nucleation and growth, and hence ductile fracture, are the triaxiality factor and the plastic strai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 1997-07, Vol.57 (4), p.375-390
Hauptverfasser: Henry, B.S., Luxmoore, A.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 390
container_issue 4
container_start_page 375
container_title Engineering fracture mechanics
container_volume 57
creator Henry, B.S.
Luxmoore, A.R.
description Ductile fracture of metals occurs as a result of nucleation, growth and coalescence of microscopic voids that initiate at inclusions and second phase particles. The main parameters that influence void nucleation and growth, and hence ductile fracture, are the triaxiality factor and the plastic strain. The triaxiality factor is widely used as a constraint parameter. Recent advances highlight the loss of J-dominance in low constraint geometries and the importance of using two-parameter theories, namely J- T and J- Q to characterise near crack front states of yielded crack geometries. In this paper we use three-dimensional finite element models of low constraint geometries to study the variation of the triaxiality factor, plastic strain and Q-value with the deformation level. Comparisons between the triaxiality factor, the plastic strain and the Q-value are made at different distances ahead of the crack front. Our numerical results show that, for a given material, there exists a unique linear relationship between the triaxiality factor and the Q-value that is independent of specimen geometry, dimensions, crack depth and deformation level. This unique relationship shows that the Q-value can be used as a ductile fracture parameter as it parameterises both the stress triaxiality and the plastic strain. It can be concluded that the Q-value and the stress triaxiality factor are equivalent constraint parameters.
doi_str_mv 10.1016/S0013-7944(97)00031-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27404703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794497000313</els_id><sourcerecordid>27404703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-c6cc76906e95c3f1a960a3f3928f5878074cf5024a014af3e6136eaf29b3375a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QchJ9LA62ewmuyeR4hcUpFjPYUwnGNnu1iRb7L9324pXTwPD877DPIydC7gWINTNK4CQma6L4rLWVwAgRSYP2EhUelhLUR6y0R9yzE5i_BwgrSoYsdn8g3hMgWLkKXj89tj4tOG2a4ct-jZxbBc8DdQsW2PTE8fIkS96m3xD3AW0qQ_EVxhwSYnCKTty2EQ6-51j9vZwP588ZdOXx-fJ3TSzBRQps8parWpQVJdWOoG1ApRO1nnlykpXoAvrSsgLBFGgk6SEVIQur9-l1CXKMbvY965C99VTTGbpo6WmwZa6PppcD3c0yAEs96ANXYyBnFkFv8SwMQLMVqDZCTRbO6bWZifQbHO3-xwNX6w9BROtp9bSwgeyySw6_0_DD55Ud6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27404703</pqid></control><display><type>article</type><title>The stress triaxiality constraint and the Q-value as a ductile fracture parameter</title><source>Elsevier ScienceDirect Journals</source><creator>Henry, B.S. ; Luxmoore, A.R.</creator><creatorcontrib>Henry, B.S. ; Luxmoore, A.R.</creatorcontrib><description>Ductile fracture of metals occurs as a result of nucleation, growth and coalescence of microscopic voids that initiate at inclusions and second phase particles. The main parameters that influence void nucleation and growth, and hence ductile fracture, are the triaxiality factor and the plastic strain. The triaxiality factor is widely used as a constraint parameter. Recent advances highlight the loss of J-dominance in low constraint geometries and the importance of using two-parameter theories, namely J- T and J- Q to characterise near crack front states of yielded crack geometries. In this paper we use three-dimensional finite element models of low constraint geometries to study the variation of the triaxiality factor, plastic strain and Q-value with the deformation level. Comparisons between the triaxiality factor, the plastic strain and the Q-value are made at different distances ahead of the crack front. Our numerical results show that, for a given material, there exists a unique linear relationship between the triaxiality factor and the Q-value that is independent of specimen geometry, dimensions, crack depth and deformation level. This unique relationship shows that the Q-value can be used as a ductile fracture parameter as it parameterises both the stress triaxiality and the plastic strain. It can be concluded that the Q-value and the stress triaxiality factor are equivalent constraint parameters.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/S0013-7944(97)00031-3</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>constraint ; ductile fracture ; finite element ; Q-value ; stress triaxiality</subject><ispartof>Engineering fracture mechanics, 1997-07, Vol.57 (4), p.375-390</ispartof><rights>1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-c6cc76906e95c3f1a960a3f3928f5878074cf5024a014af3e6136eaf29b3375a3</citedby><cites>FETCH-LOGICAL-c404t-c6cc76906e95c3f1a960a3f3928f5878074cf5024a014af3e6136eaf29b3375a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0013-7944(97)00031-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Henry, B.S.</creatorcontrib><creatorcontrib>Luxmoore, A.R.</creatorcontrib><title>The stress triaxiality constraint and the Q-value as a ductile fracture parameter</title><title>Engineering fracture mechanics</title><description>Ductile fracture of metals occurs as a result of nucleation, growth and coalescence of microscopic voids that initiate at inclusions and second phase particles. The main parameters that influence void nucleation and growth, and hence ductile fracture, are the triaxiality factor and the plastic strain. The triaxiality factor is widely used as a constraint parameter. Recent advances highlight the loss of J-dominance in low constraint geometries and the importance of using two-parameter theories, namely J- T and J- Q to characterise near crack front states of yielded crack geometries. In this paper we use three-dimensional finite element models of low constraint geometries to study the variation of the triaxiality factor, plastic strain and Q-value with the deformation level. Comparisons between the triaxiality factor, the plastic strain and the Q-value are made at different distances ahead of the crack front. Our numerical results show that, for a given material, there exists a unique linear relationship between the triaxiality factor and the Q-value that is independent of specimen geometry, dimensions, crack depth and deformation level. This unique relationship shows that the Q-value can be used as a ductile fracture parameter as it parameterises both the stress triaxiality and the plastic strain. It can be concluded that the Q-value and the stress triaxiality factor are equivalent constraint parameters.</description><subject>constraint</subject><subject>ductile fracture</subject><subject>finite element</subject><subject>Q-value</subject><subject>stress triaxiality</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QchJ9LA62ewmuyeR4hcUpFjPYUwnGNnu1iRb7L9324pXTwPD877DPIydC7gWINTNK4CQma6L4rLWVwAgRSYP2EhUelhLUR6y0R9yzE5i_BwgrSoYsdn8g3hMgWLkKXj89tj4tOG2a4ct-jZxbBc8DdQsW2PTE8fIkS96m3xD3AW0qQ_EVxhwSYnCKTty2EQ6-51j9vZwP588ZdOXx-fJ3TSzBRQps8parWpQVJdWOoG1ApRO1nnlykpXoAvrSsgLBFGgk6SEVIQur9-l1CXKMbvY965C99VTTGbpo6WmwZa6PppcD3c0yAEs96ANXYyBnFkFv8SwMQLMVqDZCTRbO6bWZifQbHO3-xwNX6w9BROtp9bSwgeyySw6_0_DD55Ud6U</recordid><startdate>19970701</startdate><enddate>19970701</enddate><creator>Henry, B.S.</creator><creator>Luxmoore, A.R.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>19970701</creationdate><title>The stress triaxiality constraint and the Q-value as a ductile fracture parameter</title><author>Henry, B.S. ; Luxmoore, A.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-c6cc76906e95c3f1a960a3f3928f5878074cf5024a014af3e6136eaf29b3375a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>constraint</topic><topic>ductile fracture</topic><topic>finite element</topic><topic>Q-value</topic><topic>stress triaxiality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henry, B.S.</creatorcontrib><creatorcontrib>Luxmoore, A.R.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henry, B.S.</au><au>Luxmoore, A.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The stress triaxiality constraint and the Q-value as a ductile fracture parameter</atitle><jtitle>Engineering fracture mechanics</jtitle><date>1997-07-01</date><risdate>1997</risdate><volume>57</volume><issue>4</issue><spage>375</spage><epage>390</epage><pages>375-390</pages><issn>0013-7944</issn><eissn>1873-7315</eissn><abstract>Ductile fracture of metals occurs as a result of nucleation, growth and coalescence of microscopic voids that initiate at inclusions and second phase particles. The main parameters that influence void nucleation and growth, and hence ductile fracture, are the triaxiality factor and the plastic strain. The triaxiality factor is widely used as a constraint parameter. Recent advances highlight the loss of J-dominance in low constraint geometries and the importance of using two-parameter theories, namely J- T and J- Q to characterise near crack front states of yielded crack geometries. In this paper we use three-dimensional finite element models of low constraint geometries to study the variation of the triaxiality factor, plastic strain and Q-value with the deformation level. Comparisons between the triaxiality factor, the plastic strain and the Q-value are made at different distances ahead of the crack front. Our numerical results show that, for a given material, there exists a unique linear relationship between the triaxiality factor and the Q-value that is independent of specimen geometry, dimensions, crack depth and deformation level. This unique relationship shows that the Q-value can be used as a ductile fracture parameter as it parameterises both the stress triaxiality and the plastic strain. It can be concluded that the Q-value and the stress triaxiality factor are equivalent constraint parameters.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0013-7944(97)00031-3</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 1997-07, Vol.57 (4), p.375-390
issn 0013-7944
1873-7315
language eng
recordid cdi_proquest_miscellaneous_27404703
source Elsevier ScienceDirect Journals
subjects constraint
ductile fracture
finite element
Q-value
stress triaxiality
title The stress triaxiality constraint and the Q-value as a ductile fracture parameter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20stress%20triaxiality%20constraint%20and%20the%20Q-value%20as%20a%20ductile%20fracture%20parameter&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Henry,%20B.S.&rft.date=1997-07-01&rft.volume=57&rft.issue=4&rft.spage=375&rft.epage=390&rft.pages=375-390&rft.issn=0013-7944&rft.eissn=1873-7315&rft_id=info:doi/10.1016/S0013-7944(97)00031-3&rft_dat=%3Cproquest_cross%3E27404703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27404703&rft_id=info:pmid/&rft_els_id=S0013794497000313&rfr_iscdi=true