High strain rate superplasticity of TiC particulate reinforced magnesium alloy composite by vortex method

The stress-strain relationships of TiC paticle reinforced magnesium alloy were examined to evaluate its superplastic properties and compared that with its microstructure. TiCp/Mg alloy composite was fabricated by vortex method. Some samples were extruded after vortex method, some were hot-rolled aft...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scripta Metallurgica et Materialia 1995-06, Vol.32 (11), p.1713-1717
Hauptverfasser: Lim, Suk-won, Imai, Tsunemichi, Nishida, Yoshinori, Choh, Takao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1717
container_issue 11
container_start_page 1713
container_title Scripta Metallurgica et Materialia
container_volume 32
creator Lim, Suk-won
Imai, Tsunemichi
Nishida, Yoshinori
Choh, Takao
description The stress-strain relationships of TiC paticle reinforced magnesium alloy were examined to evaluate its superplastic properties and compared that with its microstructure. TiCp/Mg alloy composite was fabricated by vortex method. Some samples were extruded after vortex method, some were hot-rolled after vortex and extrusion. Flow stress of both extruded and hot-rolled Mg-5%Zn /TiCp samples were found to increase linearly with increasing strain rate. With TiC volume fraction of 0.20, a maximum of 300% total elongation was achieved at the strain rates of 0.067 s exp -1 . SEM images show decrease in grain size in the order of vortex samples, extruded samples, and hot-rolled samples. Slopes ( > 0.3) of the best fit curves between flow stress and strain rate indicate that high strain rate superplasticity phenomenon occurred mainly by grain boundary sliding.
doi_str_mv 10.1016/0956-716X(95)00005-G
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_27399953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0956716X9500005G</els_id><sourcerecordid>27399953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-4f57cfb988069827ace4db477b7d1eb983073a97ada687bd4c1c92533e2327ce3</originalsourceid><addsrcrecordid>eNqNkU9LwzAYxntQcE6_gYccRPRQTfonaS6CDN2EgZcJ3kKavt0ibVOTdLhvb-rGjmIuLzz83ic87xNFVwTfE0zoA-Y5jRmhH7c8v8Ph5fH8JJoc5bPo3LlPjAkjBZ5EeqHXG-S8lbpDVnpAbujB9o10Xivtd8jUaKVnqJc2CEMzIhZ0VxuroEKtXHfg9NAi2TRmh5Rpe-N0gMod2hrr4Ru14DemuohOa9k4uDzMafT-8ryaLeLl2_x19rSMVVZQH2d1zlRd8qLAlBcJkwqyqswYK1lFIOgpZqnkTFaSFqysMkUUT_I0hSRNmIJ0GqG9rwkJhAsZQG2U6TpQXlBOKQ3IzR7prfkawHnRaqegaWQHZnAiYSnnPHj-BywIzQKY7UFljXMWatFb3Uq7EwSLsRcxFiDGAgTPxW8vYh7Wrg_-0inZ1FZ2SrvjbppTUnAesMc9BuFuWw12jAVduL-2Y6rK6L__-QEGYaWF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27398164</pqid></control><display><type>article</type><title>High strain rate superplasticity of TiC particulate reinforced magnesium alloy composite by vortex method</title><source>Alma/SFX Local Collection</source><creator>Lim, Suk-won ; Imai, Tsunemichi ; Nishida, Yoshinori ; Choh, Takao</creator><creatorcontrib>Lim, Suk-won ; Imai, Tsunemichi ; Nishida, Yoshinori ; Choh, Takao</creatorcontrib><description>The stress-strain relationships of TiC paticle reinforced magnesium alloy were examined to evaluate its superplastic properties and compared that with its microstructure. TiCp/Mg alloy composite was fabricated by vortex method. Some samples were extruded after vortex method, some were hot-rolled after vortex and extrusion. Flow stress of both extruded and hot-rolled Mg-5%Zn /TiCp samples were found to increase linearly with increasing strain rate. With TiC volume fraction of 0.20, a maximum of 300% total elongation was achieved at the strain rates of 0.067 s exp -1 . SEM images show decrease in grain size in the order of vortex samples, extruded samples, and hot-rolled samples. Slopes ( &gt; 0.3) of the best fit curves between flow stress and strain rate indicate that high strain rate superplasticity phenomenon occurred mainly by grain boundary sliding.</description><identifier>ISSN: 0956-716X</identifier><identifier>DOI: 10.1016/0956-716X(95)00005-G</identifier><language>eng</language><publisher>Seoul: Elsevier B.V</publisher><subject>ALUMINIUM ADDITIONS ; Applied sciences ; CASTING ; COMPOSITE MATERIALS ; DEFORMATION ; Elasticity. Plasticity ; ELECTRON MICROSCOPY ; Exact sciences and technology ; FLOW STRESS ; FRACTURE PROPERTIES ; IRON ADDITIONS ; MAGNESIUM BASE ALLOYS ; MATERIALS SCIENCE ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; MICROSTRUCTURE ; PARTICLES ; PLASTICITY ; THERMOMECHANICAL TREATMENTS ; TITANIUM CARBIDES ; ZINC ALLOYS</subject><ispartof>Scripta Metallurgica et Materialia, 1995-06, Vol.32 (11), p.1713-1717</ispartof><rights>1995</rights><rights>1995 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-4f57cfb988069827ace4db477b7d1eb983073a97ada687bd4c1c92533e2327ce3</citedby><cites>FETCH-LOGICAL-c486t-4f57cfb988069827ace4db477b7d1eb983073a97ada687bd4c1c92533e2327ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,886,27926,27927</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3561899$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/69666$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lim, Suk-won</creatorcontrib><creatorcontrib>Imai, Tsunemichi</creatorcontrib><creatorcontrib>Nishida, Yoshinori</creatorcontrib><creatorcontrib>Choh, Takao</creatorcontrib><title>High strain rate superplasticity of TiC particulate reinforced magnesium alloy composite by vortex method</title><title>Scripta Metallurgica et Materialia</title><description>The stress-strain relationships of TiC paticle reinforced magnesium alloy were examined to evaluate its superplastic properties and compared that with its microstructure. TiCp/Mg alloy composite was fabricated by vortex method. Some samples were extruded after vortex method, some were hot-rolled after vortex and extrusion. Flow stress of both extruded and hot-rolled Mg-5%Zn /TiCp samples were found to increase linearly with increasing strain rate. With TiC volume fraction of 0.20, a maximum of 300% total elongation was achieved at the strain rates of 0.067 s exp -1 . SEM images show decrease in grain size in the order of vortex samples, extruded samples, and hot-rolled samples. Slopes ( &gt; 0.3) of the best fit curves between flow stress and strain rate indicate that high strain rate superplasticity phenomenon occurred mainly by grain boundary sliding.</description><subject>ALUMINIUM ADDITIONS</subject><subject>Applied sciences</subject><subject>CASTING</subject><subject>COMPOSITE MATERIALS</subject><subject>DEFORMATION</subject><subject>Elasticity. Plasticity</subject><subject>ELECTRON MICROSCOPY</subject><subject>Exact sciences and technology</subject><subject>FLOW STRESS</subject><subject>FRACTURE PROPERTIES</subject><subject>IRON ADDITIONS</subject><subject>MAGNESIUM BASE ALLOYS</subject><subject>MATERIALS SCIENCE</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>MICROSTRUCTURE</subject><subject>PARTICLES</subject><subject>PLASTICITY</subject><subject>THERMOMECHANICAL TREATMENTS</subject><subject>TITANIUM CARBIDES</subject><subject>ZINC ALLOYS</subject><issn>0956-716X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqNkU9LwzAYxntQcE6_gYccRPRQTfonaS6CDN2EgZcJ3kKavt0ibVOTdLhvb-rGjmIuLzz83ic87xNFVwTfE0zoA-Y5jRmhH7c8v8Ph5fH8JJoc5bPo3LlPjAkjBZ5EeqHXG-S8lbpDVnpAbujB9o10Xivtd8jUaKVnqJc2CEMzIhZ0VxuroEKtXHfg9NAi2TRmh5Rpe-N0gMod2hrr4Ru14DemuohOa9k4uDzMafT-8ryaLeLl2_x19rSMVVZQH2d1zlRd8qLAlBcJkwqyqswYK1lFIOgpZqnkTFaSFqysMkUUT_I0hSRNmIJ0GqG9rwkJhAsZQG2U6TpQXlBOKQ3IzR7prfkawHnRaqegaWQHZnAiYSnnPHj-BywIzQKY7UFljXMWatFb3Uq7EwSLsRcxFiDGAgTPxW8vYh7Wrg_-0inZ1FZ2SrvjbppTUnAesMc9BuFuWw12jAVduL-2Y6rK6L__-QEGYaWF</recordid><startdate>19950601</startdate><enddate>19950601</enddate><creator>Lim, Suk-won</creator><creator>Imai, Tsunemichi</creator><creator>Nishida, Yoshinori</creator><creator>Choh, Takao</creator><general>Elsevier B.V</general><general>Pergamon Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19950601</creationdate><title>High strain rate superplasticity of TiC particulate reinforced magnesium alloy composite by vortex method</title><author>Lim, Suk-won ; Imai, Tsunemichi ; Nishida, Yoshinori ; Choh, Takao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-4f57cfb988069827ace4db477b7d1eb983073a97ada687bd4c1c92533e2327ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>ALUMINIUM ADDITIONS</topic><topic>Applied sciences</topic><topic>CASTING</topic><topic>COMPOSITE MATERIALS</topic><topic>DEFORMATION</topic><topic>Elasticity. Plasticity</topic><topic>ELECTRON MICROSCOPY</topic><topic>Exact sciences and technology</topic><topic>FLOW STRESS</topic><topic>FRACTURE PROPERTIES</topic><topic>IRON ADDITIONS</topic><topic>MAGNESIUM BASE ALLOYS</topic><topic>MATERIALS SCIENCE</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>MICROSTRUCTURE</topic><topic>PARTICLES</topic><topic>PLASTICITY</topic><topic>THERMOMECHANICAL TREATMENTS</topic><topic>TITANIUM CARBIDES</topic><topic>ZINC ALLOYS</topic><toplevel>online_resources</toplevel><creatorcontrib>Lim, Suk-won</creatorcontrib><creatorcontrib>Imai, Tsunemichi</creatorcontrib><creatorcontrib>Nishida, Yoshinori</creatorcontrib><creatorcontrib>Choh, Takao</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Scripta Metallurgica et Materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Suk-won</au><au>Imai, Tsunemichi</au><au>Nishida, Yoshinori</au><au>Choh, Takao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High strain rate superplasticity of TiC particulate reinforced magnesium alloy composite by vortex method</atitle><jtitle>Scripta Metallurgica et Materialia</jtitle><date>1995-06-01</date><risdate>1995</risdate><volume>32</volume><issue>11</issue><spage>1713</spage><epage>1717</epage><pages>1713-1717</pages><issn>0956-716X</issn><abstract>The stress-strain relationships of TiC paticle reinforced magnesium alloy were examined to evaluate its superplastic properties and compared that with its microstructure. TiCp/Mg alloy composite was fabricated by vortex method. Some samples were extruded after vortex method, some were hot-rolled after vortex and extrusion. Flow stress of both extruded and hot-rolled Mg-5%Zn /TiCp samples were found to increase linearly with increasing strain rate. With TiC volume fraction of 0.20, a maximum of 300% total elongation was achieved at the strain rates of 0.067 s exp -1 . SEM images show decrease in grain size in the order of vortex samples, extruded samples, and hot-rolled samples. Slopes ( &gt; 0.3) of the best fit curves between flow stress and strain rate indicate that high strain rate superplasticity phenomenon occurred mainly by grain boundary sliding.</abstract><cop>Seoul</cop><cop>Oxford</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/0956-716X(95)00005-G</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-716X
ispartof Scripta Metallurgica et Materialia, 1995-06, Vol.32 (11), p.1713-1717
issn 0956-716X
language eng
recordid cdi_proquest_miscellaneous_27399953
source Alma/SFX Local Collection
subjects ALUMINIUM ADDITIONS
Applied sciences
CASTING
COMPOSITE MATERIALS
DEFORMATION
Elasticity. Plasticity
ELECTRON MICROSCOPY
Exact sciences and technology
FLOW STRESS
FRACTURE PROPERTIES
IRON ADDITIONS
MAGNESIUM BASE ALLOYS
MATERIALS SCIENCE
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
MICROSTRUCTURE
PARTICLES
PLASTICITY
THERMOMECHANICAL TREATMENTS
TITANIUM CARBIDES
ZINC ALLOYS
title High strain rate superplasticity of TiC particulate reinforced magnesium alloy composite by vortex method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T02%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20strain%20rate%20superplasticity%20of%20TiC%20particulate%20reinforced%20magnesium%20alloy%20composite%20by%20vortex%20method&rft.jtitle=Scripta%20Metallurgica%20et%20Materialia&rft.au=Lim,%20Suk-won&rft.date=1995-06-01&rft.volume=32&rft.issue=11&rft.spage=1713&rft.epage=1717&rft.pages=1713-1717&rft.issn=0956-716X&rft_id=info:doi/10.1016/0956-716X(95)00005-G&rft_dat=%3Cproquest_osti_%3E27399953%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27398164&rft_id=info:pmid/&rft_els_id=0956716X9500005G&rfr_iscdi=true