Groundwater quality for irrigation in an arid region-application of fuzzy logic techniques

Groundwater is the main source to answer the irrigation supply in several arid and semi-arid areas. In the present work, groundwater quality for irrigation purposes in the arid region of Menzel Habib (Tunisia) for thirty-six groundwater samples is assessed considering the application of different co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2023-03, Vol.30 (11), p.29773-29789
Hauptverfasser: Dhaoui, Oussama, Agoubi, Belgacem, Antunes, Isabel Margarida Horta Ribeiro, Tlig, Lotfi, Kharroubi, Adel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Groundwater is the main source to answer the irrigation supply in several arid and semi-arid areas. In the present work, groundwater quality for irrigation purposes in the arid region of Menzel Habib (Tunisia) for thirty-six groundwater samples is assessed considering the application of different conventional water quality indicators, particularly, electrical conductivity (EC), sodium absorption ratio (SAR), soluble sodium percentage (SSP), magnesium adsorption ratio (MAR), Kelly ratio (KR), and permeability index (PI). The results obtained indicate a variability for EC: 3.06 to 14.98 mS.cm-1; SAR: 4.08 to 19.30; SSP: 35.78 to 71.53%; MAR: 34.19 to 56.01; PI: 38.47 to 72.74; and KR: 0.56 to 2.47. These results suggest that groundwater from Menzel Habib aquifer system is classified between excellent to unsuitable according to the applied water quality indices. Furthermore, the groundwater samples are also plotted in the Richards diagram classification system, based on the relation between SAR and EC, suggesting that almost groundwater samples present a harmful quality. Moreover, fuzzy logic model has been proposed and created to assess groundwater quality for irrigation. The membership functions are constructed for six significant parameters such as EC, SAR, SSP, MAR, KR, and PI and the rules are, then, fired to get a simple Fuzzy Irrigation Water Quality Index (FIWQI). The obtained groundwater quality results suggest that 3% of the samples from Menzel Habib region are considered as "good" for irrigation, 3% are classified as "good to permissible", 33% with a "permissible" quality, 36% "permissible to unsuitable", while 25% of groundwater present an "unsuitable" quality. Thus, the use of fuzzy logic techniques has more reliable and robust results by overcoming the uncertainties in the decision-making attributed to the conventional methods by the creation of new classes (excellent to good, good to permissible, and permissible to unsuitable) in addition to the classes proposed by Richards diagram classification (excellent, good, permissible, and unsuitable) to assess the groundwater quality suitability for irrigation purposes. The authors are grateful to the staff of Applied Hydrosciences Laboratory for their effort and support during laboratory analysis. This research was developed under the FCT-Fundacao para a Ciencia e a Tecnologia, I.P. program, through the project's reference UIDB/04683/2020 and UIDP/04683/2020.
ISSN:1614-7499
1614-7499
DOI:10.1007/s11356-022-24334-5