Enabling Solution Processable COFs through Suppression of Precipitation during Solvothermal Synthesis

Covalent organic frameworks (COFs) are crystalline, nanoporous materials of interest for various applications, but current COF synthetic routes lead to insoluble aggregates which precludes processing for practical implementation. Here, we report a COF synthesis method that produces a stable, homogen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2022-12, Vol.16 (12), p.20964-20974
Hauptverfasser: Khalil, Safiya, Meyer, Matthew D., Alazmi, Abdullah, Samani, Mohammad H. K., Huang, Po-Chun, Barnes, Morgan, Marciel, Amanda B., Verduzco, Rafael
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20974
container_issue 12
container_start_page 20964
container_title ACS nano
container_volume 16
creator Khalil, Safiya
Meyer, Matthew D.
Alazmi, Abdullah
Samani, Mohammad H. K.
Huang, Po-Chun
Barnes, Morgan
Marciel, Amanda B.
Verduzco, Rafael
description Covalent organic frameworks (COFs) are crystalline, nanoporous materials of interest for various applications, but current COF synthetic routes lead to insoluble aggregates which precludes processing for practical implementation. Here, we report a COF synthesis method that produces a stable, homogeneous suspension of crystalline COF nanoparticles that enables the preparation of COF monoliths, membranes, and films using conventional solution-processing techniques. Our approach involves the use of a polar solvent, diacid catalyst, and slow reagent mixing procedure at elevated temperatures which altogether enable access to crystalline COF nanoparticle suspension that does not aggregate or precipitate when kept at elevated temperatures. On cooling, the suspension undergoes a thermoreversible gelation transition to produce crystalline and highly porous COF materials. We further show that the modified synthesis approach is compatible with various COF chemistries, including both large- and small-pore imine COFs, hydrazone-linked COFs, and COFs with rhombic and hexagonal topologies, and in each case, we demonstrate that the final product has excellent crystallinity and porosity. The final materials contain both micro- and macropores, and the total porosity can be tuned through variation of sample annealing. Dynamic light scattering measurements reveal the presence of COF nanoparticles that grow with time at room temperature, transitioning from a homogeneous suspension to a gel. Finally, we prepare imine COF membranes and measure their rejection of polyethylene glycol (PEG) polymers and oligomers, and these measurements exhibit size-dependent rejection and adsorption of PEG solutes. This work demonstrates a versatile processing strategy to create crystalline and porous COF materials using solution-processing techniques and will greatly advance the development of COFs for various applications.
doi_str_mv 10.1021/acsnano.2c08580
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2739432628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2739432628</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-fccf7df4c7cbcc337f06b4c36d5f09fae1d925cc124fc696b4135a7bf4366a4e3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxoMobk7P3qRHQbolTZu0RxmbCsKEKXgLaZpsHW1Sk0bYf2_m6m6e3uN9v--D9wFwi-AUwQTNuHCaazNNBMyzHJ6BMSowiWFOPs9Pe4ZG4Mq5HYQZzSm5BCNMUoQpScZALjQvm1pvorVpfF8bHb1ZI6Rz4Syj-Wrpon5rjd9so7XvOhuUA2RU4KSou7rnv67K2yHl2_RbaVveROu9Dqur3TW4ULxx8maYE_CxXLzPn-PX1dPL_PE15hjjPlZCKFqpVFBRCoExVZCUqcCkyhQsFJeoKpJMCJSkSpAiaAhnnJYqxYTwVOIJuD_mdtZ8eel61tZOyKbhWhrvWEJxkeKEJHlAZ0dUWOOclYp1tm653TME2aFbNnTLhm6D424I92UrqxP_V2YAHo5AcLKd8VaHX_-N-wFea4go</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739432628</pqid></control><display><type>article</type><title>Enabling Solution Processable COFs through Suppression of Precipitation during Solvothermal Synthesis</title><source>American Chemical Society Journals</source><creator>Khalil, Safiya ; Meyer, Matthew D. ; Alazmi, Abdullah ; Samani, Mohammad H. K. ; Huang, Po-Chun ; Barnes, Morgan ; Marciel, Amanda B. ; Verduzco, Rafael</creator><creatorcontrib>Khalil, Safiya ; Meyer, Matthew D. ; Alazmi, Abdullah ; Samani, Mohammad H. K. ; Huang, Po-Chun ; Barnes, Morgan ; Marciel, Amanda B. ; Verduzco, Rafael</creatorcontrib><description>Covalent organic frameworks (COFs) are crystalline, nanoporous materials of interest for various applications, but current COF synthetic routes lead to insoluble aggregates which precludes processing for practical implementation. Here, we report a COF synthesis method that produces a stable, homogeneous suspension of crystalline COF nanoparticles that enables the preparation of COF monoliths, membranes, and films using conventional solution-processing techniques. Our approach involves the use of a polar solvent, diacid catalyst, and slow reagent mixing procedure at elevated temperatures which altogether enable access to crystalline COF nanoparticle suspension that does not aggregate or precipitate when kept at elevated temperatures. On cooling, the suspension undergoes a thermoreversible gelation transition to produce crystalline and highly porous COF materials. We further show that the modified synthesis approach is compatible with various COF chemistries, including both large- and small-pore imine COFs, hydrazone-linked COFs, and COFs with rhombic and hexagonal topologies, and in each case, we demonstrate that the final product has excellent crystallinity and porosity. The final materials contain both micro- and macropores, and the total porosity can be tuned through variation of sample annealing. Dynamic light scattering measurements reveal the presence of COF nanoparticles that grow with time at room temperature, transitioning from a homogeneous suspension to a gel. Finally, we prepare imine COF membranes and measure their rejection of polyethylene glycol (PEG) polymers and oligomers, and these measurements exhibit size-dependent rejection and adsorption of PEG solutes. This work demonstrates a versatile processing strategy to create crystalline and porous COF materials using solution-processing techniques and will greatly advance the development of COFs for various applications.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.2c08580</identifier><identifier>PMID: 36413762</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2022-12, Vol.16 (12), p.20964-20974</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-fccf7df4c7cbcc337f06b4c36d5f09fae1d925cc124fc696b4135a7bf4366a4e3</citedby><cites>FETCH-LOGICAL-a333t-fccf7df4c7cbcc337f06b4c36d5f09fae1d925cc124fc696b4135a7bf4366a4e3</cites><orcidid>0000-0002-0680-6123 ; 0000-0001-6083-7927 ; 0000-0002-3649-3455 ; 0000-0002-9074-4067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.2c08580$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.2c08580$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36413762$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khalil, Safiya</creatorcontrib><creatorcontrib>Meyer, Matthew D.</creatorcontrib><creatorcontrib>Alazmi, Abdullah</creatorcontrib><creatorcontrib>Samani, Mohammad H. K.</creatorcontrib><creatorcontrib>Huang, Po-Chun</creatorcontrib><creatorcontrib>Barnes, Morgan</creatorcontrib><creatorcontrib>Marciel, Amanda B.</creatorcontrib><creatorcontrib>Verduzco, Rafael</creatorcontrib><title>Enabling Solution Processable COFs through Suppression of Precipitation during Solvothermal Synthesis</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Covalent organic frameworks (COFs) are crystalline, nanoporous materials of interest for various applications, but current COF synthetic routes lead to insoluble aggregates which precludes processing for practical implementation. Here, we report a COF synthesis method that produces a stable, homogeneous suspension of crystalline COF nanoparticles that enables the preparation of COF monoliths, membranes, and films using conventional solution-processing techniques. Our approach involves the use of a polar solvent, diacid catalyst, and slow reagent mixing procedure at elevated temperatures which altogether enable access to crystalline COF nanoparticle suspension that does not aggregate or precipitate when kept at elevated temperatures. On cooling, the suspension undergoes a thermoreversible gelation transition to produce crystalline and highly porous COF materials. We further show that the modified synthesis approach is compatible with various COF chemistries, including both large- and small-pore imine COFs, hydrazone-linked COFs, and COFs with rhombic and hexagonal topologies, and in each case, we demonstrate that the final product has excellent crystallinity and porosity. The final materials contain both micro- and macropores, and the total porosity can be tuned through variation of sample annealing. Dynamic light scattering measurements reveal the presence of COF nanoparticles that grow with time at room temperature, transitioning from a homogeneous suspension to a gel. Finally, we prepare imine COF membranes and measure their rejection of polyethylene glycol (PEG) polymers and oligomers, and these measurements exhibit size-dependent rejection and adsorption of PEG solutes. This work demonstrates a versatile processing strategy to create crystalline and porous COF materials using solution-processing techniques and will greatly advance the development of COFs for various applications.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUxoMobk7P3qRHQbolTZu0RxmbCsKEKXgLaZpsHW1Sk0bYf2_m6m6e3uN9v--D9wFwi-AUwQTNuHCaazNNBMyzHJ6BMSowiWFOPs9Pe4ZG4Mq5HYQZzSm5BCNMUoQpScZALjQvm1pvorVpfF8bHb1ZI6Rz4Syj-Wrpon5rjd9so7XvOhuUA2RU4KSou7rnv67K2yHl2_RbaVveROu9Dqur3TW4ULxx8maYE_CxXLzPn-PX1dPL_PE15hjjPlZCKFqpVFBRCoExVZCUqcCkyhQsFJeoKpJMCJSkSpAiaAhnnJYqxYTwVOIJuD_mdtZ8eel61tZOyKbhWhrvWEJxkeKEJHlAZ0dUWOOclYp1tm653TME2aFbNnTLhm6D424I92UrqxP_V2YAHo5AcLKd8VaHX_-N-wFea4go</recordid><startdate>20221227</startdate><enddate>20221227</enddate><creator>Khalil, Safiya</creator><creator>Meyer, Matthew D.</creator><creator>Alazmi, Abdullah</creator><creator>Samani, Mohammad H. K.</creator><creator>Huang, Po-Chun</creator><creator>Barnes, Morgan</creator><creator>Marciel, Amanda B.</creator><creator>Verduzco, Rafael</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0680-6123</orcidid><orcidid>https://orcid.org/0000-0001-6083-7927</orcidid><orcidid>https://orcid.org/0000-0002-3649-3455</orcidid><orcidid>https://orcid.org/0000-0002-9074-4067</orcidid></search><sort><creationdate>20221227</creationdate><title>Enabling Solution Processable COFs through Suppression of Precipitation during Solvothermal Synthesis</title><author>Khalil, Safiya ; Meyer, Matthew D. ; Alazmi, Abdullah ; Samani, Mohammad H. K. ; Huang, Po-Chun ; Barnes, Morgan ; Marciel, Amanda B. ; Verduzco, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-fccf7df4c7cbcc337f06b4c36d5f09fae1d925cc124fc696b4135a7bf4366a4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalil, Safiya</creatorcontrib><creatorcontrib>Meyer, Matthew D.</creatorcontrib><creatorcontrib>Alazmi, Abdullah</creatorcontrib><creatorcontrib>Samani, Mohammad H. K.</creatorcontrib><creatorcontrib>Huang, Po-Chun</creatorcontrib><creatorcontrib>Barnes, Morgan</creatorcontrib><creatorcontrib>Marciel, Amanda B.</creatorcontrib><creatorcontrib>Verduzco, Rafael</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalil, Safiya</au><au>Meyer, Matthew D.</au><au>Alazmi, Abdullah</au><au>Samani, Mohammad H. K.</au><au>Huang, Po-Chun</au><au>Barnes, Morgan</au><au>Marciel, Amanda B.</au><au>Verduzco, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enabling Solution Processable COFs through Suppression of Precipitation during Solvothermal Synthesis</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2022-12-27</date><risdate>2022</risdate><volume>16</volume><issue>12</issue><spage>20964</spage><epage>20974</epage><pages>20964-20974</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Covalent organic frameworks (COFs) are crystalline, nanoporous materials of interest for various applications, but current COF synthetic routes lead to insoluble aggregates which precludes processing for practical implementation. Here, we report a COF synthesis method that produces a stable, homogeneous suspension of crystalline COF nanoparticles that enables the preparation of COF monoliths, membranes, and films using conventional solution-processing techniques. Our approach involves the use of a polar solvent, diacid catalyst, and slow reagent mixing procedure at elevated temperatures which altogether enable access to crystalline COF nanoparticle suspension that does not aggregate or precipitate when kept at elevated temperatures. On cooling, the suspension undergoes a thermoreversible gelation transition to produce crystalline and highly porous COF materials. We further show that the modified synthesis approach is compatible with various COF chemistries, including both large- and small-pore imine COFs, hydrazone-linked COFs, and COFs with rhombic and hexagonal topologies, and in each case, we demonstrate that the final product has excellent crystallinity and porosity. The final materials contain both micro- and macropores, and the total porosity can be tuned through variation of sample annealing. Dynamic light scattering measurements reveal the presence of COF nanoparticles that grow with time at room temperature, transitioning from a homogeneous suspension to a gel. Finally, we prepare imine COF membranes and measure their rejection of polyethylene glycol (PEG) polymers and oligomers, and these measurements exhibit size-dependent rejection and adsorption of PEG solutes. This work demonstrates a versatile processing strategy to create crystalline and porous COF materials using solution-processing techniques and will greatly advance the development of COFs for various applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36413762</pmid><doi>10.1021/acsnano.2c08580</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0680-6123</orcidid><orcidid>https://orcid.org/0000-0001-6083-7927</orcidid><orcidid>https://orcid.org/0000-0002-3649-3455</orcidid><orcidid>https://orcid.org/0000-0002-9074-4067</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2022-12, Vol.16 (12), p.20964-20974
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2739432628
source American Chemical Society Journals
title Enabling Solution Processable COFs through Suppression of Precipitation during Solvothermal Synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enabling%20Solution%20Processable%20COFs%20through%20Suppression%20of%20Precipitation%20during%20Solvothermal%20Synthesis&rft.jtitle=ACS%20nano&rft.au=Khalil,%20Safiya&rft.date=2022-12-27&rft.volume=16&rft.issue=12&rft.spage=20964&rft.epage=20974&rft.pages=20964-20974&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.2c08580&rft_dat=%3Cproquest_cross%3E2739432628%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739432628&rft_id=info:pmid/36413762&rfr_iscdi=true