High-performance FFT algorithms for the Convex C4/XA supercomputer

Some implementations of a power-of-two one-dimensional fast Fourier transform (FFT) on vector computers use radix-4 Stockham autosort kernels with a separate transpose step. This paper describes an algorithm that performs well on a Convex C4/XA vector supercomputer on large FFTs by using higher-radi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 1995-03, Vol.9 (1-2), p.163-178
Hauptverfasser: Wadleigh, Kevin R., Gostin, Gary B., Liu, John
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 178
container_issue 1-2
container_start_page 163
container_title The Journal of supercomputing
container_volume 9
creator Wadleigh, Kevin R.
Gostin, Gary B.
Liu, John
description Some implementations of a power-of-two one-dimensional fast Fourier transform (FFT) on vector computers use radix-4 Stockham autosort kernels with a separate transpose step. This paper describes an algorithm that performs well on a Convex C4/XA vector supercomputer on large FFTs by using higher-radix kernels and moving the transpose step into the computational steps. For short transforms a different algorithm is used that calculates the FFT without storing any intermediate results to memory. Performance results using these techniques are given.
doi_str_mv 10.1007/BF01245402
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27391827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27391827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-db93cb3ba4d20c53b665bc20fb2b2528551140ed9461e376741da990ac4452f33</originalsourceid><addsrcrecordid>eNpFkE1LxDAYhIMoWFcv_oKcPAh13yRv-nHcLdYVFrys4K0kabpbaTc1aUX_vZUVvMzAMDOHh5BbBg8MIF2uS2AcJQI_IxGTqYgBMzwnEeQc4kwivyRXIbwDAIpURGS9afeHeLC-cb5XR2NpWe6o6vbOt-OhD3TO6XiwtHDHT_tFC1y-rWiY5oVx_TCN1l-Ti0Z1wd78-YK8lo-7YhNvX56ei9U2NjyBMa51LowWWmHNwUihk0Rqw6HRXHPJMykZQ7B1jgmzIk1SZLXKc1AGUfJGiAW5O_0O3n1MNoxV3wZju04drZtCxVORs2zWBbk_FY13IXjbVINve-W_KwbVL6bqH5P4AQqPWDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27391827</pqid></control><display><type>article</type><title>High-performance FFT algorithms for the Convex C4/XA supercomputer</title><source>SpringerLink Journals</source><creator>Wadleigh, Kevin R. ; Gostin, Gary B. ; Liu, John</creator><creatorcontrib>Wadleigh, Kevin R. ; Gostin, Gary B. ; Liu, John</creatorcontrib><description>Some implementations of a power-of-two one-dimensional fast Fourier transform (FFT) on vector computers use radix-4 Stockham autosort kernels with a separate transpose step. This paper describes an algorithm that performs well on a Convex C4/XA vector supercomputer on large FFTs by using higher-radix kernels and moving the transpose step into the computational steps. For short transforms a different algorithm is used that calculates the FFT without storing any intermediate results to memory. Performance results using these techniques are given.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/BF01245402</identifier><language>eng</language><ispartof>The Journal of supercomputing, 1995-03, Vol.9 (1-2), p.163-178</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c260t-db93cb3ba4d20c53b665bc20fb2b2528551140ed9461e376741da990ac4452f33</citedby><cites>FETCH-LOGICAL-c260t-db93cb3ba4d20c53b665bc20fb2b2528551140ed9461e376741da990ac4452f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wadleigh, Kevin R.</creatorcontrib><creatorcontrib>Gostin, Gary B.</creatorcontrib><creatorcontrib>Liu, John</creatorcontrib><title>High-performance FFT algorithms for the Convex C4/XA supercomputer</title><title>The Journal of supercomputing</title><description>Some implementations of a power-of-two one-dimensional fast Fourier transform (FFT) on vector computers use radix-4 Stockham autosort kernels with a separate transpose step. This paper describes an algorithm that performs well on a Convex C4/XA vector supercomputer on large FFTs by using higher-radix kernels and moving the transpose step into the computational steps. For short transforms a different algorithm is used that calculates the FFT without storing any intermediate results to memory. Performance results using these techniques are given.</description><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LxDAYhIMoWFcv_oKcPAh13yRv-nHcLdYVFrys4K0kabpbaTc1aUX_vZUVvMzAMDOHh5BbBg8MIF2uS2AcJQI_IxGTqYgBMzwnEeQc4kwivyRXIbwDAIpURGS9afeHeLC-cb5XR2NpWe6o6vbOt-OhD3TO6XiwtHDHT_tFC1y-rWiY5oVx_TCN1l-Ti0Z1wd78-YK8lo-7YhNvX56ei9U2NjyBMa51LowWWmHNwUihk0Rqw6HRXHPJMykZQ7B1jgmzIk1SZLXKc1AGUfJGiAW5O_0O3n1MNoxV3wZju04drZtCxVORs2zWBbk_FY13IXjbVINve-W_KwbVL6bqH5P4AQqPWDM</recordid><startdate>199503</startdate><enddate>199503</enddate><creator>Wadleigh, Kevin R.</creator><creator>Gostin, Gary B.</creator><creator>Liu, John</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>199503</creationdate><title>High-performance FFT algorithms for the Convex C4/XA supercomputer</title><author>Wadleigh, Kevin R. ; Gostin, Gary B. ; Liu, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-db93cb3ba4d20c53b665bc20fb2b2528551140ed9461e376741da990ac4452f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wadleigh, Kevin R.</creatorcontrib><creatorcontrib>Gostin, Gary B.</creatorcontrib><creatorcontrib>Liu, John</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wadleigh, Kevin R.</au><au>Gostin, Gary B.</au><au>Liu, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance FFT algorithms for the Convex C4/XA supercomputer</atitle><jtitle>The Journal of supercomputing</jtitle><date>1995-03</date><risdate>1995</risdate><volume>9</volume><issue>1-2</issue><spage>163</spage><epage>178</epage><pages>163-178</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Some implementations of a power-of-two one-dimensional fast Fourier transform (FFT) on vector computers use radix-4 Stockham autosort kernels with a separate transpose step. This paper describes an algorithm that performs well on a Convex C4/XA vector supercomputer on large FFTs by using higher-radix kernels and moving the transpose step into the computational steps. For short transforms a different algorithm is used that calculates the FFT without storing any intermediate results to memory. Performance results using these techniques are given.</abstract><doi>10.1007/BF01245402</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 1995-03, Vol.9 (1-2), p.163-178
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_miscellaneous_27391827
source SpringerLink Journals
title High-performance FFT algorithms for the Convex C4/XA supercomputer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T02%3A51%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20FFT%20algorithms%20for%20the%20Convex%20C4/XA%20supercomputer&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Wadleigh,%20Kevin%20R.&rft.date=1995-03&rft.volume=9&rft.issue=1-2&rft.spage=163&rft.epage=178&rft.pages=163-178&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/BF01245402&rft_dat=%3Cproquest_cross%3E27391827%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27391827&rft_id=info:pmid/&rfr_iscdi=true