Mechanical characterization of isolated mitochondria under conditions of oxidative stress

Mechanical properties have been proven to be a pivotal parameter to enhance our understanding of living systems. While research during the last decades focused on cells and tissues, little is known about the role of organelle mechanics in cell function. Here, mitochondria are of specific interest du...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomicrofluidics 2022-12, Vol.16 (6), p.064101-064101
Hauptverfasser: Komaragiri, Yesaswini, Panhwar, Muzaffar H., Fregin, Bob, Jagirdar, Gayatri, Wolke, Carmen, Spiegler, Stefanie, Otto, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 064101
container_issue 6
container_start_page 064101
container_title Biomicrofluidics
container_volume 16
creator Komaragiri, Yesaswini
Panhwar, Muzaffar H.
Fregin, Bob
Jagirdar, Gayatri
Wolke, Carmen
Spiegler, Stefanie
Otto, Oliver
description Mechanical properties have been proven to be a pivotal parameter to enhance our understanding of living systems. While research during the last decades focused on cells and tissues, little is known about the role of organelle mechanics in cell function. Here, mitochondria are of specific interest due to their involvement in numerous physiological and pathological processes, e.g., in the production and homeostasis of reactive oxygen species (ROS). Using real-time fluorescence and deformability cytometry, we present a microfluidic technology that is capable to determine the mechanical properties of individual mitochondria at a throughput exceeding 100 organelles per second. Our data on several thousands of viable mitochondria isolated from rat C6 glial cells yield a homogenous population with a median deformation that scales with the applied hydrodynamic stress. In two proof-of-principle studies, we investigated the impact of exogenously and endogenously produced ROS on mitochondria mechanics. Exposing C6 cells to hydrogen peroxide (H2O2) triggers superoxide production and leads to a reduction in mitochondria size while deformation is increased. In a second study, we focused on the knockout of tafazzin, which has been associated with impaired remodeling of the mitochondrial membrane and elevated levels of ROS. Interestingly, our results reveal the same mechanical alterations as observed after the exposure to H2O2, which points to a unified biophysical mechanism of how mitochondria respond to the presence of oxidative stress. In summary, we introduce high-throughput mechanical phenotyping into the field of organelle biology with potential applications for understanding sub-cellular dynamics that have not been accessible before.
doi_str_mv 10.1063/5.0111581
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2738497058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2738497058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-bad673fb9ca53e95901d5a9cb5a4c7b8984e32843c9d8039c25262e69b1c41e73</originalsourceid><addsrcrecordid>eNp90ctqGzEUBuChpFDH6aJvMJBNE7Cj64y0KQSTS8Glm3aRldBIZ2KZ8ciVNKbp00eOjZsLZKUj9OlHOqcovmA0xaiiF3yKMMZc4A_FCEtKJhhxcfSs_lQcx7hEiOOakFFx9wPMQvfO6K7MRdAmQXD_dHK-L31buug7ncCWK5e8WfjeBqfLobcQSpN3bgvjVvq_zuZrGyhjChDjSfGx1V2Ez_t1XPy-vvo1u53Mf958n13OJ4ZxlCaNtlVN20YazSlILhG2XEvTcM1M3QgpGFAiGDXSCkSlIZxUBCrZYMMw1HRcfNvlrodmBdZAn4Lu1Dq4lQ4PymunXp70bqHu_UbJqmZUiBzwdR8Q_J8BYlIrFw10ne7BD1GRmgom69y7TE9f0aUfQp-_t1U1oUwwltXZTpngYwzQHh6DkdpOSXG1n1K25zsbjUtPXT_gjQ__oVrb9j38NvkRhv-iVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737234844</pqid></control><display><type>article</type><title>Mechanical characterization of isolated mitochondria under conditions of oxidative stress</title><source>AIP Journals Complete</source><source>PubMed Central</source><creator>Komaragiri, Yesaswini ; Panhwar, Muzaffar H. ; Fregin, Bob ; Jagirdar, Gayatri ; Wolke, Carmen ; Spiegler, Stefanie ; Otto, Oliver</creator><creatorcontrib>Komaragiri, Yesaswini ; Panhwar, Muzaffar H. ; Fregin, Bob ; Jagirdar, Gayatri ; Wolke, Carmen ; Spiegler, Stefanie ; Otto, Oliver</creatorcontrib><description>Mechanical properties have been proven to be a pivotal parameter to enhance our understanding of living systems. While research during the last decades focused on cells and tissues, little is known about the role of organelle mechanics in cell function. Here, mitochondria are of specific interest due to their involvement in numerous physiological and pathological processes, e.g., in the production and homeostasis of reactive oxygen species (ROS). Using real-time fluorescence and deformability cytometry, we present a microfluidic technology that is capable to determine the mechanical properties of individual mitochondria at a throughput exceeding 100 organelles per second. Our data on several thousands of viable mitochondria isolated from rat C6 glial cells yield a homogenous population with a median deformation that scales with the applied hydrodynamic stress. In two proof-of-principle studies, we investigated the impact of exogenously and endogenously produced ROS on mitochondria mechanics. Exposing C6 cells to hydrogen peroxide (H2O2) triggers superoxide production and leads to a reduction in mitochondria size while deformation is increased. In a second study, we focused on the knockout of tafazzin, which has been associated with impaired remodeling of the mitochondrial membrane and elevated levels of ROS. Interestingly, our results reveal the same mechanical alterations as observed after the exposure to H2O2, which points to a unified biophysical mechanism of how mitochondria respond to the presence of oxidative stress. In summary, we introduce high-throughput mechanical phenotyping into the field of organelle biology with potential applications for understanding sub-cellular dynamics that have not been accessible before.</description><identifier>ISSN: 1932-1058</identifier><identifier>EISSN: 1932-1058</identifier><identifier>DOI: 10.1063/5.0111581</identifier><identifier>CODEN: BIOMGB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cytometry ; Deformation ; Formability ; Homeostasis ; Hydrogen peroxide ; Mechanical properties ; Mechanics (physics) ; Microfluidics ; Mitochondria ; Organelles ; Oxidative stress ; Regular</subject><ispartof>Biomicrofluidics, 2022-12, Vol.16 (6), p.064101-064101</ispartof><rights>Author(s)</rights><rights>2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><rights>2022 Author(s). 2022 Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-bad673fb9ca53e95901d5a9cb5a4c7b8984e32843c9d8039c25262e69b1c41e73</citedby><cites>FETCH-LOGICAL-c450t-bad673fb9ca53e95901d5a9cb5a4c7b8984e32843c9d8039c25262e69b1c41e73</cites><orcidid>0000-0002-7934-3369 ; 0000-0001-6726-6135 ; 0000-0003-0280-5374 ; 0000-0003-0030-4488 ; 0000-0002-7405-2554 ; 0000-0001-8621-1957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674388/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.aip.org/bmf/article-lookup/doi/10.1063/5.0111581$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,796,887,4514,27931,27932,53798,53800,76392</link.rule.ids></links><search><creatorcontrib>Komaragiri, Yesaswini</creatorcontrib><creatorcontrib>Panhwar, Muzaffar H.</creatorcontrib><creatorcontrib>Fregin, Bob</creatorcontrib><creatorcontrib>Jagirdar, Gayatri</creatorcontrib><creatorcontrib>Wolke, Carmen</creatorcontrib><creatorcontrib>Spiegler, Stefanie</creatorcontrib><creatorcontrib>Otto, Oliver</creatorcontrib><title>Mechanical characterization of isolated mitochondria under conditions of oxidative stress</title><title>Biomicrofluidics</title><description>Mechanical properties have been proven to be a pivotal parameter to enhance our understanding of living systems. While research during the last decades focused on cells and tissues, little is known about the role of organelle mechanics in cell function. Here, mitochondria are of specific interest due to their involvement in numerous physiological and pathological processes, e.g., in the production and homeostasis of reactive oxygen species (ROS). Using real-time fluorescence and deformability cytometry, we present a microfluidic technology that is capable to determine the mechanical properties of individual mitochondria at a throughput exceeding 100 organelles per second. Our data on several thousands of viable mitochondria isolated from rat C6 glial cells yield a homogenous population with a median deformation that scales with the applied hydrodynamic stress. In two proof-of-principle studies, we investigated the impact of exogenously and endogenously produced ROS on mitochondria mechanics. Exposing C6 cells to hydrogen peroxide (H2O2) triggers superoxide production and leads to a reduction in mitochondria size while deformation is increased. In a second study, we focused on the knockout of tafazzin, which has been associated with impaired remodeling of the mitochondrial membrane and elevated levels of ROS. Interestingly, our results reveal the same mechanical alterations as observed after the exposure to H2O2, which points to a unified biophysical mechanism of how mitochondria respond to the presence of oxidative stress. In summary, we introduce high-throughput mechanical phenotyping into the field of organelle biology with potential applications for understanding sub-cellular dynamics that have not been accessible before.</description><subject>Cytometry</subject><subject>Deformation</subject><subject>Formability</subject><subject>Homeostasis</subject><subject>Hydrogen peroxide</subject><subject>Mechanical properties</subject><subject>Mechanics (physics)</subject><subject>Microfluidics</subject><subject>Mitochondria</subject><subject>Organelles</subject><subject>Oxidative stress</subject><subject>Regular</subject><issn>1932-1058</issn><issn>1932-1058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90ctqGzEUBuChpFDH6aJvMJBNE7Cj64y0KQSTS8Glm3aRldBIZ2KZ8ciVNKbp00eOjZsLZKUj9OlHOqcovmA0xaiiF3yKMMZc4A_FCEtKJhhxcfSs_lQcx7hEiOOakFFx9wPMQvfO6K7MRdAmQXD_dHK-L31buug7ncCWK5e8WfjeBqfLobcQSpN3bgvjVvq_zuZrGyhjChDjSfGx1V2Ez_t1XPy-vvo1u53Mf958n13OJ4ZxlCaNtlVN20YazSlILhG2XEvTcM1M3QgpGFAiGDXSCkSlIZxUBCrZYMMw1HRcfNvlrodmBdZAn4Lu1Dq4lQ4PymunXp70bqHu_UbJqmZUiBzwdR8Q_J8BYlIrFw10ne7BD1GRmgom69y7TE9f0aUfQp-_t1U1oUwwltXZTpngYwzQHh6DkdpOSXG1n1K25zsbjUtPXT_gjQ__oVrb9j38NvkRhv-iVQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Komaragiri, Yesaswini</creator><creator>Panhwar, Muzaffar H.</creator><creator>Fregin, Bob</creator><creator>Jagirdar, Gayatri</creator><creator>Wolke, Carmen</creator><creator>Spiegler, Stefanie</creator><creator>Otto, Oliver</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7934-3369</orcidid><orcidid>https://orcid.org/0000-0001-6726-6135</orcidid><orcidid>https://orcid.org/0000-0003-0280-5374</orcidid><orcidid>https://orcid.org/0000-0003-0030-4488</orcidid><orcidid>https://orcid.org/0000-0002-7405-2554</orcidid><orcidid>https://orcid.org/0000-0001-8621-1957</orcidid></search><sort><creationdate>20221201</creationdate><title>Mechanical characterization of isolated mitochondria under conditions of oxidative stress</title><author>Komaragiri, Yesaswini ; Panhwar, Muzaffar H. ; Fregin, Bob ; Jagirdar, Gayatri ; Wolke, Carmen ; Spiegler, Stefanie ; Otto, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-bad673fb9ca53e95901d5a9cb5a4c7b8984e32843c9d8039c25262e69b1c41e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cytometry</topic><topic>Deformation</topic><topic>Formability</topic><topic>Homeostasis</topic><topic>Hydrogen peroxide</topic><topic>Mechanical properties</topic><topic>Mechanics (physics)</topic><topic>Microfluidics</topic><topic>Mitochondria</topic><topic>Organelles</topic><topic>Oxidative stress</topic><topic>Regular</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Komaragiri, Yesaswini</creatorcontrib><creatorcontrib>Panhwar, Muzaffar H.</creatorcontrib><creatorcontrib>Fregin, Bob</creatorcontrib><creatorcontrib>Jagirdar, Gayatri</creatorcontrib><creatorcontrib>Wolke, Carmen</creatorcontrib><creatorcontrib>Spiegler, Stefanie</creatorcontrib><creatorcontrib>Otto, Oliver</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomicrofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Komaragiri, Yesaswini</au><au>Panhwar, Muzaffar H.</au><au>Fregin, Bob</au><au>Jagirdar, Gayatri</au><au>Wolke, Carmen</au><au>Spiegler, Stefanie</au><au>Otto, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical characterization of isolated mitochondria under conditions of oxidative stress</atitle><jtitle>Biomicrofluidics</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>16</volume><issue>6</issue><spage>064101</spage><epage>064101</epage><pages>064101-064101</pages><issn>1932-1058</issn><eissn>1932-1058</eissn><coden>BIOMGB</coden><abstract>Mechanical properties have been proven to be a pivotal parameter to enhance our understanding of living systems. While research during the last decades focused on cells and tissues, little is known about the role of organelle mechanics in cell function. Here, mitochondria are of specific interest due to their involvement in numerous physiological and pathological processes, e.g., in the production and homeostasis of reactive oxygen species (ROS). Using real-time fluorescence and deformability cytometry, we present a microfluidic technology that is capable to determine the mechanical properties of individual mitochondria at a throughput exceeding 100 organelles per second. Our data on several thousands of viable mitochondria isolated from rat C6 glial cells yield a homogenous population with a median deformation that scales with the applied hydrodynamic stress. In two proof-of-principle studies, we investigated the impact of exogenously and endogenously produced ROS on mitochondria mechanics. Exposing C6 cells to hydrogen peroxide (H2O2) triggers superoxide production and leads to a reduction in mitochondria size while deformation is increased. In a second study, we focused on the knockout of tafazzin, which has been associated with impaired remodeling of the mitochondrial membrane and elevated levels of ROS. Interestingly, our results reveal the same mechanical alterations as observed after the exposure to H2O2, which points to a unified biophysical mechanism of how mitochondria respond to the presence of oxidative stress. In summary, we introduce high-throughput mechanical phenotyping into the field of organelle biology with potential applications for understanding sub-cellular dynamics that have not been accessible before.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0111581</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7934-3369</orcidid><orcidid>https://orcid.org/0000-0001-6726-6135</orcidid><orcidid>https://orcid.org/0000-0003-0280-5374</orcidid><orcidid>https://orcid.org/0000-0003-0030-4488</orcidid><orcidid>https://orcid.org/0000-0002-7405-2554</orcidid><orcidid>https://orcid.org/0000-0001-8621-1957</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-1058
ispartof Biomicrofluidics, 2022-12, Vol.16 (6), p.064101-064101
issn 1932-1058
1932-1058
language eng
recordid cdi_proquest_miscellaneous_2738497058
source AIP Journals Complete; PubMed Central
subjects Cytometry
Deformation
Formability
Homeostasis
Hydrogen peroxide
Mechanical properties
Mechanics (physics)
Microfluidics
Mitochondria
Organelles
Oxidative stress
Regular
title Mechanical characterization of isolated mitochondria under conditions of oxidative stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T02%3A21%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20characterization%20of%20isolated%20mitochondria%20under%20conditions%20of%20oxidative%20stress&rft.jtitle=Biomicrofluidics&rft.au=Komaragiri,%20Yesaswini&rft.date=2022-12-01&rft.volume=16&rft.issue=6&rft.spage=064101&rft.epage=064101&rft.pages=064101-064101&rft.issn=1932-1058&rft.eissn=1932-1058&rft.coden=BIOMGB&rft_id=info:doi/10.1063/5.0111581&rft_dat=%3Cproquest_pubme%3E2738497058%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737234844&rft_id=info:pmid/&rfr_iscdi=true