Mechanical characterization of isolated mitochondria under conditions of oxidative stress
Mechanical properties have been proven to be a pivotal parameter to enhance our understanding of living systems. While research during the last decades focused on cells and tissues, little is known about the role of organelle mechanics in cell function. Here, mitochondria are of specific interest du...
Gespeichert in:
Veröffentlicht in: | Biomicrofluidics 2022-12, Vol.16 (6), p.064101-064101 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 064101 |
---|---|
container_issue | 6 |
container_start_page | 064101 |
container_title | Biomicrofluidics |
container_volume | 16 |
creator | Komaragiri, Yesaswini Panhwar, Muzaffar H. Fregin, Bob Jagirdar, Gayatri Wolke, Carmen Spiegler, Stefanie Otto, Oliver |
description | Mechanical properties have been proven to be a pivotal parameter to enhance our understanding of living systems. While research during the last decades focused on cells and tissues, little is known about the role of organelle mechanics in cell function. Here, mitochondria are of specific interest due to their involvement in numerous physiological and pathological processes, e.g., in the production and homeostasis of reactive oxygen species (ROS). Using real-time fluorescence and deformability cytometry, we present a microfluidic technology that is capable to determine the mechanical properties of individual mitochondria at a throughput exceeding 100 organelles per second. Our data on several thousands of viable mitochondria isolated from rat C6 glial cells yield a homogenous population with a median deformation that scales with the applied hydrodynamic stress. In two proof-of-principle studies, we investigated the impact of exogenously and endogenously produced ROS on mitochondria mechanics. Exposing C6 cells to hydrogen peroxide (H2O2) triggers superoxide production and leads to a reduction in mitochondria size while deformation is increased. In a second study, we focused on the knockout of tafazzin, which has been associated with impaired remodeling of the mitochondrial membrane and elevated levels of ROS. Interestingly, our results reveal the same mechanical alterations as observed after the exposure to H2O2, which points to a unified biophysical mechanism of how mitochondria respond to the presence of oxidative stress. In summary, we introduce high-throughput mechanical phenotyping into the field of organelle biology with potential applications for understanding sub-cellular dynamics that have not been accessible before. |
doi_str_mv | 10.1063/5.0111581 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2738497058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2738497058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-bad673fb9ca53e95901d5a9cb5a4c7b8984e32843c9d8039c25262e69b1c41e73</originalsourceid><addsrcrecordid>eNp90ctqGzEUBuChpFDH6aJvMJBNE7Cj64y0KQSTS8Glm3aRldBIZ2KZ8ciVNKbp00eOjZsLZKUj9OlHOqcovmA0xaiiF3yKMMZc4A_FCEtKJhhxcfSs_lQcx7hEiOOakFFx9wPMQvfO6K7MRdAmQXD_dHK-L31buug7ncCWK5e8WfjeBqfLobcQSpN3bgvjVvq_zuZrGyhjChDjSfGx1V2Ez_t1XPy-vvo1u53Mf958n13OJ4ZxlCaNtlVN20YazSlILhG2XEvTcM1M3QgpGFAiGDXSCkSlIZxUBCrZYMMw1HRcfNvlrodmBdZAn4Lu1Dq4lQ4PymunXp70bqHu_UbJqmZUiBzwdR8Q_J8BYlIrFw10ne7BD1GRmgom69y7TE9f0aUfQp-_t1U1oUwwltXZTpngYwzQHh6DkdpOSXG1n1K25zsbjUtPXT_gjQ__oVrb9j38NvkRhv-iVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737234844</pqid></control><display><type>article</type><title>Mechanical characterization of isolated mitochondria under conditions of oxidative stress</title><source>AIP Journals Complete</source><source>PubMed Central</source><creator>Komaragiri, Yesaswini ; Panhwar, Muzaffar H. ; Fregin, Bob ; Jagirdar, Gayatri ; Wolke, Carmen ; Spiegler, Stefanie ; Otto, Oliver</creator><creatorcontrib>Komaragiri, Yesaswini ; Panhwar, Muzaffar H. ; Fregin, Bob ; Jagirdar, Gayatri ; Wolke, Carmen ; Spiegler, Stefanie ; Otto, Oliver</creatorcontrib><description>Mechanical properties have been proven to be a pivotal parameter to enhance our understanding of living systems. While research during the last decades focused on cells and tissues, little is known about the role of organelle mechanics in cell function. Here, mitochondria are of specific interest due to their involvement in numerous physiological and pathological processes, e.g., in the production and homeostasis of reactive oxygen species (ROS). Using real-time fluorescence and deformability cytometry, we present a microfluidic technology that is capable to determine the mechanical properties of individual mitochondria at a throughput exceeding 100 organelles per second. Our data on several thousands of viable mitochondria isolated from rat C6 glial cells yield a homogenous population with a median deformation that scales with the applied hydrodynamic stress. In two proof-of-principle studies, we investigated the impact of exogenously and endogenously produced ROS on mitochondria mechanics. Exposing C6 cells to hydrogen peroxide (H2O2) triggers superoxide production and leads to a reduction in mitochondria size while deformation is increased. In a second study, we focused on the knockout of tafazzin, which has been associated with impaired remodeling of the mitochondrial membrane and elevated levels of ROS. Interestingly, our results reveal the same mechanical alterations as observed after the exposure to H2O2, which points to a unified biophysical mechanism of how mitochondria respond to the presence of oxidative stress. In summary, we introduce high-throughput mechanical phenotyping into the field of organelle biology with potential applications for understanding sub-cellular dynamics that have not been accessible before.</description><identifier>ISSN: 1932-1058</identifier><identifier>EISSN: 1932-1058</identifier><identifier>DOI: 10.1063/5.0111581</identifier><identifier>CODEN: BIOMGB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cytometry ; Deformation ; Formability ; Homeostasis ; Hydrogen peroxide ; Mechanical properties ; Mechanics (physics) ; Microfluidics ; Mitochondria ; Organelles ; Oxidative stress ; Regular</subject><ispartof>Biomicrofluidics, 2022-12, Vol.16 (6), p.064101-064101</ispartof><rights>Author(s)</rights><rights>2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><rights>2022 Author(s). 2022 Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-bad673fb9ca53e95901d5a9cb5a4c7b8984e32843c9d8039c25262e69b1c41e73</citedby><cites>FETCH-LOGICAL-c450t-bad673fb9ca53e95901d5a9cb5a4c7b8984e32843c9d8039c25262e69b1c41e73</cites><orcidid>0000-0002-7934-3369 ; 0000-0001-6726-6135 ; 0000-0003-0280-5374 ; 0000-0003-0030-4488 ; 0000-0002-7405-2554 ; 0000-0001-8621-1957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674388/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.aip.org/bmf/article-lookup/doi/10.1063/5.0111581$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,796,887,4514,27931,27932,53798,53800,76392</link.rule.ids></links><search><creatorcontrib>Komaragiri, Yesaswini</creatorcontrib><creatorcontrib>Panhwar, Muzaffar H.</creatorcontrib><creatorcontrib>Fregin, Bob</creatorcontrib><creatorcontrib>Jagirdar, Gayatri</creatorcontrib><creatorcontrib>Wolke, Carmen</creatorcontrib><creatorcontrib>Spiegler, Stefanie</creatorcontrib><creatorcontrib>Otto, Oliver</creatorcontrib><title>Mechanical characterization of isolated mitochondria under conditions of oxidative stress</title><title>Biomicrofluidics</title><description>Mechanical properties have been proven to be a pivotal parameter to enhance our understanding of living systems. While research during the last decades focused on cells and tissues, little is known about the role of organelle mechanics in cell function. Here, mitochondria are of specific interest due to their involvement in numerous physiological and pathological processes, e.g., in the production and homeostasis of reactive oxygen species (ROS). Using real-time fluorescence and deformability cytometry, we present a microfluidic technology that is capable to determine the mechanical properties of individual mitochondria at a throughput exceeding 100 organelles per second. Our data on several thousands of viable mitochondria isolated from rat C6 glial cells yield a homogenous population with a median deformation that scales with the applied hydrodynamic stress. In two proof-of-principle studies, we investigated the impact of exogenously and endogenously produced ROS on mitochondria mechanics. Exposing C6 cells to hydrogen peroxide (H2O2) triggers superoxide production and leads to a reduction in mitochondria size while deformation is increased. In a second study, we focused on the knockout of tafazzin, which has been associated with impaired remodeling of the mitochondrial membrane and elevated levels of ROS. Interestingly, our results reveal the same mechanical alterations as observed after the exposure to H2O2, which points to a unified biophysical mechanism of how mitochondria respond to the presence of oxidative stress. In summary, we introduce high-throughput mechanical phenotyping into the field of organelle biology with potential applications for understanding sub-cellular dynamics that have not been accessible before.</description><subject>Cytometry</subject><subject>Deformation</subject><subject>Formability</subject><subject>Homeostasis</subject><subject>Hydrogen peroxide</subject><subject>Mechanical properties</subject><subject>Mechanics (physics)</subject><subject>Microfluidics</subject><subject>Mitochondria</subject><subject>Organelles</subject><subject>Oxidative stress</subject><subject>Regular</subject><issn>1932-1058</issn><issn>1932-1058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90ctqGzEUBuChpFDH6aJvMJBNE7Cj64y0KQSTS8Glm3aRldBIZ2KZ8ciVNKbp00eOjZsLZKUj9OlHOqcovmA0xaiiF3yKMMZc4A_FCEtKJhhxcfSs_lQcx7hEiOOakFFx9wPMQvfO6K7MRdAmQXD_dHK-L31buug7ncCWK5e8WfjeBqfLobcQSpN3bgvjVvq_zuZrGyhjChDjSfGx1V2Ez_t1XPy-vvo1u53Mf958n13OJ4ZxlCaNtlVN20YazSlILhG2XEvTcM1M3QgpGFAiGDXSCkSlIZxUBCrZYMMw1HRcfNvlrodmBdZAn4Lu1Dq4lQ4PymunXp70bqHu_UbJqmZUiBzwdR8Q_J8BYlIrFw10ne7BD1GRmgom69y7TE9f0aUfQp-_t1U1oUwwltXZTpngYwzQHh6DkdpOSXG1n1K25zsbjUtPXT_gjQ__oVrb9j38NvkRhv-iVQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Komaragiri, Yesaswini</creator><creator>Panhwar, Muzaffar H.</creator><creator>Fregin, Bob</creator><creator>Jagirdar, Gayatri</creator><creator>Wolke, Carmen</creator><creator>Spiegler, Stefanie</creator><creator>Otto, Oliver</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7934-3369</orcidid><orcidid>https://orcid.org/0000-0001-6726-6135</orcidid><orcidid>https://orcid.org/0000-0003-0280-5374</orcidid><orcidid>https://orcid.org/0000-0003-0030-4488</orcidid><orcidid>https://orcid.org/0000-0002-7405-2554</orcidid><orcidid>https://orcid.org/0000-0001-8621-1957</orcidid></search><sort><creationdate>20221201</creationdate><title>Mechanical characterization of isolated mitochondria under conditions of oxidative stress</title><author>Komaragiri, Yesaswini ; Panhwar, Muzaffar H. ; Fregin, Bob ; Jagirdar, Gayatri ; Wolke, Carmen ; Spiegler, Stefanie ; Otto, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-bad673fb9ca53e95901d5a9cb5a4c7b8984e32843c9d8039c25262e69b1c41e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cytometry</topic><topic>Deformation</topic><topic>Formability</topic><topic>Homeostasis</topic><topic>Hydrogen peroxide</topic><topic>Mechanical properties</topic><topic>Mechanics (physics)</topic><topic>Microfluidics</topic><topic>Mitochondria</topic><topic>Organelles</topic><topic>Oxidative stress</topic><topic>Regular</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Komaragiri, Yesaswini</creatorcontrib><creatorcontrib>Panhwar, Muzaffar H.</creatorcontrib><creatorcontrib>Fregin, Bob</creatorcontrib><creatorcontrib>Jagirdar, Gayatri</creatorcontrib><creatorcontrib>Wolke, Carmen</creatorcontrib><creatorcontrib>Spiegler, Stefanie</creatorcontrib><creatorcontrib>Otto, Oliver</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomicrofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Komaragiri, Yesaswini</au><au>Panhwar, Muzaffar H.</au><au>Fregin, Bob</au><au>Jagirdar, Gayatri</au><au>Wolke, Carmen</au><au>Spiegler, Stefanie</au><au>Otto, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical characterization of isolated mitochondria under conditions of oxidative stress</atitle><jtitle>Biomicrofluidics</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>16</volume><issue>6</issue><spage>064101</spage><epage>064101</epage><pages>064101-064101</pages><issn>1932-1058</issn><eissn>1932-1058</eissn><coden>BIOMGB</coden><abstract>Mechanical properties have been proven to be a pivotal parameter to enhance our understanding of living systems. While research during the last decades focused on cells and tissues, little is known about the role of organelle mechanics in cell function. Here, mitochondria are of specific interest due to their involvement in numerous physiological and pathological processes, e.g., in the production and homeostasis of reactive oxygen species (ROS). Using real-time fluorescence and deformability cytometry, we present a microfluidic technology that is capable to determine the mechanical properties of individual mitochondria at a throughput exceeding 100 organelles per second. Our data on several thousands of viable mitochondria isolated from rat C6 glial cells yield a homogenous population with a median deformation that scales with the applied hydrodynamic stress. In two proof-of-principle studies, we investigated the impact of exogenously and endogenously produced ROS on mitochondria mechanics. Exposing C6 cells to hydrogen peroxide (H2O2) triggers superoxide production and leads to a reduction in mitochondria size while deformation is increased. In a second study, we focused on the knockout of tafazzin, which has been associated with impaired remodeling of the mitochondrial membrane and elevated levels of ROS. Interestingly, our results reveal the same mechanical alterations as observed after the exposure to H2O2, which points to a unified biophysical mechanism of how mitochondria respond to the presence of oxidative stress. In summary, we introduce high-throughput mechanical phenotyping into the field of organelle biology with potential applications for understanding sub-cellular dynamics that have not been accessible before.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0111581</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7934-3369</orcidid><orcidid>https://orcid.org/0000-0001-6726-6135</orcidid><orcidid>https://orcid.org/0000-0003-0280-5374</orcidid><orcidid>https://orcid.org/0000-0003-0030-4488</orcidid><orcidid>https://orcid.org/0000-0002-7405-2554</orcidid><orcidid>https://orcid.org/0000-0001-8621-1957</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-1058 |
ispartof | Biomicrofluidics, 2022-12, Vol.16 (6), p.064101-064101 |
issn | 1932-1058 1932-1058 |
language | eng |
recordid | cdi_proquest_miscellaneous_2738497058 |
source | AIP Journals Complete; PubMed Central |
subjects | Cytometry Deformation Formability Homeostasis Hydrogen peroxide Mechanical properties Mechanics (physics) Microfluidics Mitochondria Organelles Oxidative stress Regular |
title | Mechanical characterization of isolated mitochondria under conditions of oxidative stress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T02%3A21%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20characterization%20of%20isolated%20mitochondria%20under%20conditions%20of%20oxidative%20stress&rft.jtitle=Biomicrofluidics&rft.au=Komaragiri,%20Yesaswini&rft.date=2022-12-01&rft.volume=16&rft.issue=6&rft.spage=064101&rft.epage=064101&rft.pages=064101-064101&rft.issn=1932-1058&rft.eissn=1932-1058&rft.coden=BIOMGB&rft_id=info:doi/10.1063/5.0111581&rft_dat=%3Cproquest_pubme%3E2738497058%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737234844&rft_id=info:pmid/&rfr_iscdi=true |