Biomineralization-inspired sandwich dentin desensitization strategy based on multifunctional nanocomposite with yolk-shell structure

Dentin hypersensitivity (DH) treatment is far from being unequivocal in providing a superior strategy that combines immediate and long-term efficiency of dentinal tubule (DT) occlusion and clinical applicability. In order to achieve this aim, a type of multifunctional yolk-shell nanocomposite with a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2022-12, Vol.15 (1), p.127-143
Hauptverfasser: Yi, Luyao, Wu, Hongling, Xu, Yue, Yu, Jian, Zhao, Yaning, Yang, Hongye, Huang, Cui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 143
container_issue 1
container_start_page 127
container_title Nanoscale
container_volume 15
creator Yi, Luyao
Wu, Hongling
Xu, Yue
Yu, Jian
Zhao, Yaning
Yang, Hongye
Huang, Cui
description Dentin hypersensitivity (DH) treatment is far from being unequivocal in providing a superior strategy that combines immediate and long-term efficiency of dentinal tubule (DT) occlusion and clinical applicability. In order to achieve this aim, a type of multifunctional yolk-shell nanocomposite with acid resistance, mechanical resistance and biomineralization properties was developed in this study, which consists of a silica/mesoporous titanium-zirconium nanocarrier (STZ) and poly(allylamine hydrochloride) (PAH)-stabilized amorphous calcium phosphate (ACP) liquid precursor. First, the nanocomposite, named as PSTZ, immediately occluded DTs and demonstrated outstanding acid and mechanical resistance. Second, the PSTZ nanocomposite induced intrafibrillar mineralization of single-layer collagen fibrils and remineralization of demineralized dentin matrix. Finally, PSTZ promoted the odontogenic differentiation of dental pulp stem cells by releasing ACP and silicon ions. The reconstruction of the dentin-mimicking hierarchical structure and the introduction of newly formed minerals in the upper, middle and lower segments of DTs, defined as sandwich-like structures, markedly reduced the permeability and achieved superior long-term sealing effects. The nanocomposite material based on mesoporous yolk-shell carriers and liquid-phase mineralized precursors developed in this study represents a versatile biomimetic sandwich desensitization strategy and offers fresh insight into the clinical management of DH. A novel biomineralization-inspired sandwich dentin desensitization strategy combining immediate and long-term occluding effects was mediated using a multifunctional yolk-shell nanocomposite.
doi_str_mv 10.1039/d2nr04993g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2738493999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2756584128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-8b94e81d82746303fa6f52da4ec4c121daea468b2ecfa07c783a35b563b2968f3</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhoMofqxevCsFLyJU0yRN06PfCqIgei5pOnWjbbImKbKe_eFm3XUFTzPM-8wwMy9Cuxk-zjAtTxpiHGZlSV9W0CbBDKeUFmR1mXO2gba8f8WYl5TTdbQRS1gITDfR15m2vTbgZKc_ZdDWpNr4iXbQJF6a5kOrcdKACdrE4MF4HRZg4oOTAV6mSS19xGOlH7qg28GomS67xEhjle0nNnZB8qHDOJna7i31Y-i6Wf-gwuBgG621svOws4gj9Hx1-XR-k949XN-en96lKh4UUlGXDETWCFIwTjFtJW9z0kgGiqmMZI0EybioCahW4kIVgkqa1zmnNSm5aOkIHc7nTpx9H8CHqtdexVWkATv4ihRUsJKW8ZUjdPAPfbWDizfNqJzngmVEROpoTilnvXfQVhOne-mmVYarmTfVBbl__PHmOsL7i5FD3UOzRH_NiMDeHHBeLdU_c-k35i6Xug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756584128</pqid></control><display><type>article</type><title>Biomineralization-inspired sandwich dentin desensitization strategy based on multifunctional nanocomposite with yolk-shell structure</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Yi, Luyao ; Wu, Hongling ; Xu, Yue ; Yu, Jian ; Zhao, Yaning ; Yang, Hongye ; Huang, Cui</creator><creatorcontrib>Yi, Luyao ; Wu, Hongling ; Xu, Yue ; Yu, Jian ; Zhao, Yaning ; Yang, Hongye ; Huang, Cui</creatorcontrib><description>Dentin hypersensitivity (DH) treatment is far from being unequivocal in providing a superior strategy that combines immediate and long-term efficiency of dentinal tubule (DT) occlusion and clinical applicability. In order to achieve this aim, a type of multifunctional yolk-shell nanocomposite with acid resistance, mechanical resistance and biomineralization properties was developed in this study, which consists of a silica/mesoporous titanium-zirconium nanocarrier (STZ) and poly(allylamine hydrochloride) (PAH)-stabilized amorphous calcium phosphate (ACP) liquid precursor. First, the nanocomposite, named as PSTZ, immediately occluded DTs and demonstrated outstanding acid and mechanical resistance. Second, the PSTZ nanocomposite induced intrafibrillar mineralization of single-layer collagen fibrils and remineralization of demineralized dentin matrix. Finally, PSTZ promoted the odontogenic differentiation of dental pulp stem cells by releasing ACP and silicon ions. The reconstruction of the dentin-mimicking hierarchical structure and the introduction of newly formed minerals in the upper, middle and lower segments of DTs, defined as sandwich-like structures, markedly reduced the permeability and achieved superior long-term sealing effects. The nanocomposite material based on mesoporous yolk-shell carriers and liquid-phase mineralized precursors developed in this study represents a versatile biomimetic sandwich desensitization strategy and offers fresh insight into the clinical management of DH. A novel biomineralization-inspired sandwich dentin desensitization strategy combining immediate and long-term occluding effects was mediated using a multifunctional yolk-shell nanocomposite.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d2nr04993g</identifier><identifier>PMID: 36408803</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Acid resistance ; Biomimetics ; Calcium phosphates ; Collagen - chemistry ; Demineralizing ; Dentin ; Dentin - chemistry ; Desensitization ; Liquid phases ; Mineralization ; Nanocomposites ; Occlusion ; Precursors ; Shells (structural forms) ; Silicon Dioxide - chemistry ; Stem cells ; Zirconium</subject><ispartof>Nanoscale, 2022-12, Vol.15 (1), p.127-143</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-8b94e81d82746303fa6f52da4ec4c121daea468b2ecfa07c783a35b563b2968f3</citedby><cites>FETCH-LOGICAL-c337t-8b94e81d82746303fa6f52da4ec4c121daea468b2ecfa07c783a35b563b2968f3</cites><orcidid>0000-0001-9582-7198 ; 0000-0002-9710-3019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36408803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yi, Luyao</creatorcontrib><creatorcontrib>Wu, Hongling</creatorcontrib><creatorcontrib>Xu, Yue</creatorcontrib><creatorcontrib>Yu, Jian</creatorcontrib><creatorcontrib>Zhao, Yaning</creatorcontrib><creatorcontrib>Yang, Hongye</creatorcontrib><creatorcontrib>Huang, Cui</creatorcontrib><title>Biomineralization-inspired sandwich dentin desensitization strategy based on multifunctional nanocomposite with yolk-shell structure</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Dentin hypersensitivity (DH) treatment is far from being unequivocal in providing a superior strategy that combines immediate and long-term efficiency of dentinal tubule (DT) occlusion and clinical applicability. In order to achieve this aim, a type of multifunctional yolk-shell nanocomposite with acid resistance, mechanical resistance and biomineralization properties was developed in this study, which consists of a silica/mesoporous titanium-zirconium nanocarrier (STZ) and poly(allylamine hydrochloride) (PAH)-stabilized amorphous calcium phosphate (ACP) liquid precursor. First, the nanocomposite, named as PSTZ, immediately occluded DTs and demonstrated outstanding acid and mechanical resistance. Second, the PSTZ nanocomposite induced intrafibrillar mineralization of single-layer collagen fibrils and remineralization of demineralized dentin matrix. Finally, PSTZ promoted the odontogenic differentiation of dental pulp stem cells by releasing ACP and silicon ions. The reconstruction of the dentin-mimicking hierarchical structure and the introduction of newly formed minerals in the upper, middle and lower segments of DTs, defined as sandwich-like structures, markedly reduced the permeability and achieved superior long-term sealing effects. The nanocomposite material based on mesoporous yolk-shell carriers and liquid-phase mineralized precursors developed in this study represents a versatile biomimetic sandwich desensitization strategy and offers fresh insight into the clinical management of DH. A novel biomineralization-inspired sandwich dentin desensitization strategy combining immediate and long-term occluding effects was mediated using a multifunctional yolk-shell nanocomposite.</description><subject>Acid resistance</subject><subject>Biomimetics</subject><subject>Calcium phosphates</subject><subject>Collagen - chemistry</subject><subject>Demineralizing</subject><subject>Dentin</subject><subject>Dentin - chemistry</subject><subject>Desensitization</subject><subject>Liquid phases</subject><subject>Mineralization</subject><subject>Nanocomposites</subject><subject>Occlusion</subject><subject>Precursors</subject><subject>Shells (structural forms)</subject><subject>Silicon Dioxide - chemistry</subject><subject>Stem cells</subject><subject>Zirconium</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1LxDAQhoMofqxevCsFLyJU0yRN06PfCqIgei5pOnWjbbImKbKe_eFm3XUFTzPM-8wwMy9Cuxk-zjAtTxpiHGZlSV9W0CbBDKeUFmR1mXO2gba8f8WYl5TTdbQRS1gITDfR15m2vTbgZKc_ZdDWpNr4iXbQJF6a5kOrcdKACdrE4MF4HRZg4oOTAV6mSS19xGOlH7qg28GomS67xEhjle0nNnZB8qHDOJna7i31Y-i6Wf-gwuBgG621svOws4gj9Hx1-XR-k949XN-en96lKh4UUlGXDETWCFIwTjFtJW9z0kgGiqmMZI0EybioCahW4kIVgkqa1zmnNSm5aOkIHc7nTpx9H8CHqtdexVWkATv4ihRUsJKW8ZUjdPAPfbWDizfNqJzngmVEROpoTilnvXfQVhOne-mmVYarmTfVBbl__PHmOsL7i5FD3UOzRH_NiMDeHHBeLdU_c-k35i6Xug</recordid><startdate>20221222</startdate><enddate>20221222</enddate><creator>Yi, Luyao</creator><creator>Wu, Hongling</creator><creator>Xu, Yue</creator><creator>Yu, Jian</creator><creator>Zhao, Yaning</creator><creator>Yang, Hongye</creator><creator>Huang, Cui</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9582-7198</orcidid><orcidid>https://orcid.org/0000-0002-9710-3019</orcidid></search><sort><creationdate>20221222</creationdate><title>Biomineralization-inspired sandwich dentin desensitization strategy based on multifunctional nanocomposite with yolk-shell structure</title><author>Yi, Luyao ; Wu, Hongling ; Xu, Yue ; Yu, Jian ; Zhao, Yaning ; Yang, Hongye ; Huang, Cui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-8b94e81d82746303fa6f52da4ec4c121daea468b2ecfa07c783a35b563b2968f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acid resistance</topic><topic>Biomimetics</topic><topic>Calcium phosphates</topic><topic>Collagen - chemistry</topic><topic>Demineralizing</topic><topic>Dentin</topic><topic>Dentin - chemistry</topic><topic>Desensitization</topic><topic>Liquid phases</topic><topic>Mineralization</topic><topic>Nanocomposites</topic><topic>Occlusion</topic><topic>Precursors</topic><topic>Shells (structural forms)</topic><topic>Silicon Dioxide - chemistry</topic><topic>Stem cells</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Luyao</creatorcontrib><creatorcontrib>Wu, Hongling</creatorcontrib><creatorcontrib>Xu, Yue</creatorcontrib><creatorcontrib>Yu, Jian</creatorcontrib><creatorcontrib>Zhao, Yaning</creatorcontrib><creatorcontrib>Yang, Hongye</creatorcontrib><creatorcontrib>Huang, Cui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yi, Luyao</au><au>Wu, Hongling</au><au>Xu, Yue</au><au>Yu, Jian</au><au>Zhao, Yaning</au><au>Yang, Hongye</au><au>Huang, Cui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomineralization-inspired sandwich dentin desensitization strategy based on multifunctional nanocomposite with yolk-shell structure</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2022-12-22</date><risdate>2022</risdate><volume>15</volume><issue>1</issue><spage>127</spage><epage>143</epage><pages>127-143</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Dentin hypersensitivity (DH) treatment is far from being unequivocal in providing a superior strategy that combines immediate and long-term efficiency of dentinal tubule (DT) occlusion and clinical applicability. In order to achieve this aim, a type of multifunctional yolk-shell nanocomposite with acid resistance, mechanical resistance and biomineralization properties was developed in this study, which consists of a silica/mesoporous titanium-zirconium nanocarrier (STZ) and poly(allylamine hydrochloride) (PAH)-stabilized amorphous calcium phosphate (ACP) liquid precursor. First, the nanocomposite, named as PSTZ, immediately occluded DTs and demonstrated outstanding acid and mechanical resistance. Second, the PSTZ nanocomposite induced intrafibrillar mineralization of single-layer collagen fibrils and remineralization of demineralized dentin matrix. Finally, PSTZ promoted the odontogenic differentiation of dental pulp stem cells by releasing ACP and silicon ions. The reconstruction of the dentin-mimicking hierarchical structure and the introduction of newly formed minerals in the upper, middle and lower segments of DTs, defined as sandwich-like structures, markedly reduced the permeability and achieved superior long-term sealing effects. The nanocomposite material based on mesoporous yolk-shell carriers and liquid-phase mineralized precursors developed in this study represents a versatile biomimetic sandwich desensitization strategy and offers fresh insight into the clinical management of DH. A novel biomineralization-inspired sandwich dentin desensitization strategy combining immediate and long-term occluding effects was mediated using a multifunctional yolk-shell nanocomposite.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36408803</pmid><doi>10.1039/d2nr04993g</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9582-7198</orcidid><orcidid>https://orcid.org/0000-0002-9710-3019</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2022-12, Vol.15 (1), p.127-143
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2738493999
source MEDLINE; Royal Society Of Chemistry Journals 2008-
subjects Acid resistance
Biomimetics
Calcium phosphates
Collagen - chemistry
Demineralizing
Dentin
Dentin - chemistry
Desensitization
Liquid phases
Mineralization
Nanocomposites
Occlusion
Precursors
Shells (structural forms)
Silicon Dioxide - chemistry
Stem cells
Zirconium
title Biomineralization-inspired sandwich dentin desensitization strategy based on multifunctional nanocomposite with yolk-shell structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomineralization-inspired%20sandwich%20dentin%20desensitization%20strategy%20based%20on%20multifunctional%20nanocomposite%20with%20yolk-shell%20structure&rft.jtitle=Nanoscale&rft.au=Yi,%20Luyao&rft.date=2022-12-22&rft.volume=15&rft.issue=1&rft.spage=127&rft.epage=143&rft.pages=127-143&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d2nr04993g&rft_dat=%3Cproquest_cross%3E2756584128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756584128&rft_id=info:pmid/36408803&rfr_iscdi=true