Generalized Resonance Energy Transfer Theory: Applications to Vibrational Energy Flow in Optical Cavities

A general rate theory for resonance energy transfer (gRET) is formulated to incorporate any degrees of freedom (e.g., rotation, vibration, exciton, and polariton) as well as coherently coupled composite donor or acceptor states. The compact rate expression allows us to establish useful relationships...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2022-12, Vol.13 (47), p.10943-10951
1. Verfasser: Cao, Jianshu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10951
container_issue 47
container_start_page 10943
container_title The journal of physical chemistry letters
container_volume 13
creator Cao, Jianshu
description A general rate theory for resonance energy transfer (gRET) is formulated to incorporate any degrees of freedom (e.g., rotation, vibration, exciton, and polariton) as well as coherently coupled composite donor or acceptor states. The compact rate expression allows us to establish useful relationships: (i) detailed balance condition when the donor and acceptor are at the same temperature; (ii) proportionality to the product of dipole correlation tensors, which is not necessarily equivalent to spectral overlap; (iii) scaling with the effective coherent size, i.e., the number of coherently coupled molecules or modes; (iv) decomposition of collective rate in homogeneous systems into the monomer and coherence contributions such that the ratio of the two defines the quantum enhancement factor F; (v) spatial and orientational dependences as derived from the interaction potential. For the special case of exciton transfer, the general rate formalism reduces to FRET or its multichromophoric extension. When applied to cavity-assisted vibrational energy transfer between molecules or within a molecule, the general rate expression provides an intuitive explanation of intriguing phenomena such as cooperativity, resonance, and nonlinearity in the collective vibrational strong coupling (VSC) regime, as demonstrated in recent simulations. The relevance of gRET to cavity-catalyzed reactions and intramolecular vibrational redistribution is discussed and will lead to further theoretical developments.
doi_str_mv 10.1021/acs.jpclett.2c02707
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2738493848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2738493848</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-720158abb08f68d7ef1c8cf15e2e3778e03ab74b6d1399c089ddf67457da75503</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKu_wEuOXrZNsh_JeiulrUKhINVryGZnNSXdrEmq1F_v2lbw5GGYr_cdmAehW0pGlDA6VjqMNp22EOOIacI44WdoQMtMJJyK_PxPfYmuQtgQUpRE8AEyC2jBK2u-oMZPEFyrWg141g9f93jtVRsa8Hj9Bs7v7_Gk66zRKhrXBhwdfjGVP3TK_nrm1n1i0-JVF3ulxVP1YaKBcI0uGmUD3JzyED3PZ-vpQ7JcLR6nk2WiUsZiwhmhuVBVRURTiJpDQ7XQDc2BQcq5AJKqimdVUdO0LDURZV03Bc9yXiue5yQdorvj3c679x2EKLcmaLBWteB2QTKeiqzsQ_TS9CjV3oXgoZGdN1vl95IS-QNW9mDlCaw8ge1d46PrsHQ73z8f_nV8Ayp6gIs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738493848</pqid></control><display><type>article</type><title>Generalized Resonance Energy Transfer Theory: Applications to Vibrational Energy Flow in Optical Cavities</title><source>American Chemical Society</source><creator>Cao, Jianshu</creator><creatorcontrib>Cao, Jianshu</creatorcontrib><description>A general rate theory for resonance energy transfer (gRET) is formulated to incorporate any degrees of freedom (e.g., rotation, vibration, exciton, and polariton) as well as coherently coupled composite donor or acceptor states. The compact rate expression allows us to establish useful relationships: (i) detailed balance condition when the donor and acceptor are at the same temperature; (ii) proportionality to the product of dipole correlation tensors, which is not necessarily equivalent to spectral overlap; (iii) scaling with the effective coherent size, i.e., the number of coherently coupled molecules or modes; (iv) decomposition of collective rate in homogeneous systems into the monomer and coherence contributions such that the ratio of the two defines the quantum enhancement factor F; (v) spatial and orientational dependences as derived from the interaction potential. For the special case of exciton transfer, the general rate formalism reduces to FRET or its multichromophoric extension. When applied to cavity-assisted vibrational energy transfer between molecules or within a molecule, the general rate expression provides an intuitive explanation of intriguing phenomena such as cooperativity, resonance, and nonlinearity in the collective vibrational strong coupling (VSC) regime, as demonstrated in recent simulations. The relevance of gRET to cavity-catalyzed reactions and intramolecular vibrational redistribution is discussed and will lead to further theoretical developments.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.2c02707</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Physical Insights into Quantum Phenomena and Function</subject><ispartof>The journal of physical chemistry letters, 2022-12, Vol.13 (47), p.10943-10951</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-720158abb08f68d7ef1c8cf15e2e3778e03ab74b6d1399c089ddf67457da75503</citedby><cites>FETCH-LOGICAL-a322t-720158abb08f68d7ef1c8cf15e2e3778e03ab74b6d1399c089ddf67457da75503</cites><orcidid>0000-0001-7616-7809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.2c02707$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.2c02707$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Cao, Jianshu</creatorcontrib><title>Generalized Resonance Energy Transfer Theory: Applications to Vibrational Energy Flow in Optical Cavities</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>A general rate theory for resonance energy transfer (gRET) is formulated to incorporate any degrees of freedom (e.g., rotation, vibration, exciton, and polariton) as well as coherently coupled composite donor or acceptor states. The compact rate expression allows us to establish useful relationships: (i) detailed balance condition when the donor and acceptor are at the same temperature; (ii) proportionality to the product of dipole correlation tensors, which is not necessarily equivalent to spectral overlap; (iii) scaling with the effective coherent size, i.e., the number of coherently coupled molecules or modes; (iv) decomposition of collective rate in homogeneous systems into the monomer and coherence contributions such that the ratio of the two defines the quantum enhancement factor F; (v) spatial and orientational dependences as derived from the interaction potential. For the special case of exciton transfer, the general rate formalism reduces to FRET or its multichromophoric extension. When applied to cavity-assisted vibrational energy transfer between molecules or within a molecule, the general rate expression provides an intuitive explanation of intriguing phenomena such as cooperativity, resonance, and nonlinearity in the collective vibrational strong coupling (VSC) regime, as demonstrated in recent simulations. The relevance of gRET to cavity-catalyzed reactions and intramolecular vibrational redistribution is discussed and will lead to further theoretical developments.</description><subject>Physical Insights into Quantum Phenomena and Function</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKu_wEuOXrZNsh_JeiulrUKhINVryGZnNSXdrEmq1F_v2lbw5GGYr_cdmAehW0pGlDA6VjqMNp22EOOIacI44WdoQMtMJJyK_PxPfYmuQtgQUpRE8AEyC2jBK2u-oMZPEFyrWg141g9f93jtVRsa8Hj9Bs7v7_Gk66zRKhrXBhwdfjGVP3TK_nrm1n1i0-JVF3ulxVP1YaKBcI0uGmUD3JzyED3PZ-vpQ7JcLR6nk2WiUsZiwhmhuVBVRURTiJpDQ7XQDc2BQcq5AJKqimdVUdO0LDURZV03Bc9yXiue5yQdorvj3c679x2EKLcmaLBWteB2QTKeiqzsQ_TS9CjV3oXgoZGdN1vl95IS-QNW9mDlCaw8ge1d46PrsHQ73z8f_nV8Ayp6gIs</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Cao, Jianshu</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7616-7809</orcidid></search><sort><creationdate>20221201</creationdate><title>Generalized Resonance Energy Transfer Theory: Applications to Vibrational Energy Flow in Optical Cavities</title><author>Cao, Jianshu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-720158abb08f68d7ef1c8cf15e2e3778e03ab74b6d1399c089ddf67457da75503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Physical Insights into Quantum Phenomena and Function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Jianshu</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Jianshu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Resonance Energy Transfer Theory: Applications to Vibrational Energy Flow in Optical Cavities</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>13</volume><issue>47</issue><spage>10943</spage><epage>10951</epage><pages>10943-10951</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>A general rate theory for resonance energy transfer (gRET) is formulated to incorporate any degrees of freedom (e.g., rotation, vibration, exciton, and polariton) as well as coherently coupled composite donor or acceptor states. The compact rate expression allows us to establish useful relationships: (i) detailed balance condition when the donor and acceptor are at the same temperature; (ii) proportionality to the product of dipole correlation tensors, which is not necessarily equivalent to spectral overlap; (iii) scaling with the effective coherent size, i.e., the number of coherently coupled molecules or modes; (iv) decomposition of collective rate in homogeneous systems into the monomer and coherence contributions such that the ratio of the two defines the quantum enhancement factor F; (v) spatial and orientational dependences as derived from the interaction potential. For the special case of exciton transfer, the general rate formalism reduces to FRET or its multichromophoric extension. When applied to cavity-assisted vibrational energy transfer between molecules or within a molecule, the general rate expression provides an intuitive explanation of intriguing phenomena such as cooperativity, resonance, and nonlinearity in the collective vibrational strong coupling (VSC) regime, as demonstrated in recent simulations. The relevance of gRET to cavity-catalyzed reactions and intramolecular vibrational redistribution is discussed and will lead to further theoretical developments.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpclett.2c02707</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7616-7809</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2022-12, Vol.13 (47), p.10943-10951
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2738493848
source American Chemical Society
subjects Physical Insights into Quantum Phenomena and Function
title Generalized Resonance Energy Transfer Theory: Applications to Vibrational Energy Flow in Optical Cavities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Resonance%20Energy%20Transfer%20Theory:%20Applications%20to%20Vibrational%20Energy%20Flow%20in%20Optical%20Cavities&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Cao,%20Jianshu&rft.date=2022-12-01&rft.volume=13&rft.issue=47&rft.spage=10943&rft.epage=10951&rft.pages=10943-10951&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.2c02707&rft_dat=%3Cproquest_cross%3E2738493848%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2738493848&rft_id=info:pmid/&rfr_iscdi=true