Generalized Resonance Energy Transfer Theory: Applications to Vibrational Energy Flow in Optical Cavities
A general rate theory for resonance energy transfer (gRET) is formulated to incorporate any degrees of freedom (e.g., rotation, vibration, exciton, and polariton) as well as coherently coupled composite donor or acceptor states. The compact rate expression allows us to establish useful relationships...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2022-12, Vol.13 (47), p.10943-10951 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10951 |
---|---|
container_issue | 47 |
container_start_page | 10943 |
container_title | The journal of physical chemistry letters |
container_volume | 13 |
creator | Cao, Jianshu |
description | A general rate theory for resonance energy transfer (gRET) is formulated to incorporate any degrees of freedom (e.g., rotation, vibration, exciton, and polariton) as well as coherently coupled composite donor or acceptor states. The compact rate expression allows us to establish useful relationships: (i) detailed balance condition when the donor and acceptor are at the same temperature; (ii) proportionality to the product of dipole correlation tensors, which is not necessarily equivalent to spectral overlap; (iii) scaling with the effective coherent size, i.e., the number of coherently coupled molecules or modes; (iv) decomposition of collective rate in homogeneous systems into the monomer and coherence contributions such that the ratio of the two defines the quantum enhancement factor F; (v) spatial and orientational dependences as derived from the interaction potential. For the special case of exciton transfer, the general rate formalism reduces to FRET or its multichromophoric extension. When applied to cavity-assisted vibrational energy transfer between molecules or within a molecule, the general rate expression provides an intuitive explanation of intriguing phenomena such as cooperativity, resonance, and nonlinearity in the collective vibrational strong coupling (VSC) regime, as demonstrated in recent simulations. The relevance of gRET to cavity-catalyzed reactions and intramolecular vibrational redistribution is discussed and will lead to further theoretical developments. |
doi_str_mv | 10.1021/acs.jpclett.2c02707 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2738493848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2738493848</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-720158abb08f68d7ef1c8cf15e2e3778e03ab74b6d1399c089ddf67457da75503</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKu_wEuOXrZNsh_JeiulrUKhINVryGZnNSXdrEmq1F_v2lbw5GGYr_cdmAehW0pGlDA6VjqMNp22EOOIacI44WdoQMtMJJyK_PxPfYmuQtgQUpRE8AEyC2jBK2u-oMZPEFyrWg141g9f93jtVRsa8Hj9Bs7v7_Gk66zRKhrXBhwdfjGVP3TK_nrm1n1i0-JVF3ulxVP1YaKBcI0uGmUD3JzyED3PZ-vpQ7JcLR6nk2WiUsZiwhmhuVBVRURTiJpDQ7XQDc2BQcq5AJKqimdVUdO0LDURZV03Bc9yXiue5yQdorvj3c679x2EKLcmaLBWteB2QTKeiqzsQ_TS9CjV3oXgoZGdN1vl95IS-QNW9mDlCaw8ge1d46PrsHQ73z8f_nV8Ayp6gIs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738493848</pqid></control><display><type>article</type><title>Generalized Resonance Energy Transfer Theory: Applications to Vibrational Energy Flow in Optical Cavities</title><source>American Chemical Society</source><creator>Cao, Jianshu</creator><creatorcontrib>Cao, Jianshu</creatorcontrib><description>A general rate theory for resonance energy transfer (gRET) is formulated to incorporate any degrees of freedom (e.g., rotation, vibration, exciton, and polariton) as well as coherently coupled composite donor or acceptor states. The compact rate expression allows us to establish useful relationships: (i) detailed balance condition when the donor and acceptor are at the same temperature; (ii) proportionality to the product of dipole correlation tensors, which is not necessarily equivalent to spectral overlap; (iii) scaling with the effective coherent size, i.e., the number of coherently coupled molecules or modes; (iv) decomposition of collective rate in homogeneous systems into the monomer and coherence contributions such that the ratio of the two defines the quantum enhancement factor F; (v) spatial and orientational dependences as derived from the interaction potential. For the special case of exciton transfer, the general rate formalism reduces to FRET or its multichromophoric extension. When applied to cavity-assisted vibrational energy transfer between molecules or within a molecule, the general rate expression provides an intuitive explanation of intriguing phenomena such as cooperativity, resonance, and nonlinearity in the collective vibrational strong coupling (VSC) regime, as demonstrated in recent simulations. The relevance of gRET to cavity-catalyzed reactions and intramolecular vibrational redistribution is discussed and will lead to further theoretical developments.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.2c02707</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Physical Insights into Quantum Phenomena and Function</subject><ispartof>The journal of physical chemistry letters, 2022-12, Vol.13 (47), p.10943-10951</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-720158abb08f68d7ef1c8cf15e2e3778e03ab74b6d1399c089ddf67457da75503</citedby><cites>FETCH-LOGICAL-a322t-720158abb08f68d7ef1c8cf15e2e3778e03ab74b6d1399c089ddf67457da75503</cites><orcidid>0000-0001-7616-7809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.2c02707$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.2c02707$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Cao, Jianshu</creatorcontrib><title>Generalized Resonance Energy Transfer Theory: Applications to Vibrational Energy Flow in Optical Cavities</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>A general rate theory for resonance energy transfer (gRET) is formulated to incorporate any degrees of freedom (e.g., rotation, vibration, exciton, and polariton) as well as coherently coupled composite donor or acceptor states. The compact rate expression allows us to establish useful relationships: (i) detailed balance condition when the donor and acceptor are at the same temperature; (ii) proportionality to the product of dipole correlation tensors, which is not necessarily equivalent to spectral overlap; (iii) scaling with the effective coherent size, i.e., the number of coherently coupled molecules or modes; (iv) decomposition of collective rate in homogeneous systems into the monomer and coherence contributions such that the ratio of the two defines the quantum enhancement factor F; (v) spatial and orientational dependences as derived from the interaction potential. For the special case of exciton transfer, the general rate formalism reduces to FRET or its multichromophoric extension. When applied to cavity-assisted vibrational energy transfer between molecules or within a molecule, the general rate expression provides an intuitive explanation of intriguing phenomena such as cooperativity, resonance, and nonlinearity in the collective vibrational strong coupling (VSC) regime, as demonstrated in recent simulations. The relevance of gRET to cavity-catalyzed reactions and intramolecular vibrational redistribution is discussed and will lead to further theoretical developments.</description><subject>Physical Insights into Quantum Phenomena and Function</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKu_wEuOXrZNsh_JeiulrUKhINVryGZnNSXdrEmq1F_v2lbw5GGYr_cdmAehW0pGlDA6VjqMNp22EOOIacI44WdoQMtMJJyK_PxPfYmuQtgQUpRE8AEyC2jBK2u-oMZPEFyrWg141g9f93jtVRsa8Hj9Bs7v7_Gk66zRKhrXBhwdfjGVP3TK_nrm1n1i0-JVF3ulxVP1YaKBcI0uGmUD3JzyED3PZ-vpQ7JcLR6nk2WiUsZiwhmhuVBVRURTiJpDQ7XQDc2BQcq5AJKqimdVUdO0LDURZV03Bc9yXiue5yQdorvj3c679x2EKLcmaLBWteB2QTKeiqzsQ_TS9CjV3oXgoZGdN1vl95IS-QNW9mDlCaw8ge1d46PrsHQ73z8f_nV8Ayp6gIs</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Cao, Jianshu</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7616-7809</orcidid></search><sort><creationdate>20221201</creationdate><title>Generalized Resonance Energy Transfer Theory: Applications to Vibrational Energy Flow in Optical Cavities</title><author>Cao, Jianshu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-720158abb08f68d7ef1c8cf15e2e3778e03ab74b6d1399c089ddf67457da75503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Physical Insights into Quantum Phenomena and Function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Jianshu</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Jianshu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Resonance Energy Transfer Theory: Applications to Vibrational Energy Flow in Optical Cavities</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>13</volume><issue>47</issue><spage>10943</spage><epage>10951</epage><pages>10943-10951</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>A general rate theory for resonance energy transfer (gRET) is formulated to incorporate any degrees of freedom (e.g., rotation, vibration, exciton, and polariton) as well as coherently coupled composite donor or acceptor states. The compact rate expression allows us to establish useful relationships: (i) detailed balance condition when the donor and acceptor are at the same temperature; (ii) proportionality to the product of dipole correlation tensors, which is not necessarily equivalent to spectral overlap; (iii) scaling with the effective coherent size, i.e., the number of coherently coupled molecules or modes; (iv) decomposition of collective rate in homogeneous systems into the monomer and coherence contributions such that the ratio of the two defines the quantum enhancement factor F; (v) spatial and orientational dependences as derived from the interaction potential. For the special case of exciton transfer, the general rate formalism reduces to FRET or its multichromophoric extension. When applied to cavity-assisted vibrational energy transfer between molecules or within a molecule, the general rate expression provides an intuitive explanation of intriguing phenomena such as cooperativity, resonance, and nonlinearity in the collective vibrational strong coupling (VSC) regime, as demonstrated in recent simulations. The relevance of gRET to cavity-catalyzed reactions and intramolecular vibrational redistribution is discussed and will lead to further theoretical developments.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpclett.2c02707</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7616-7809</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2022-12, Vol.13 (47), p.10943-10951 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_proquest_miscellaneous_2738493848 |
source | American Chemical Society |
subjects | Physical Insights into Quantum Phenomena and Function |
title | Generalized Resonance Energy Transfer Theory: Applications to Vibrational Energy Flow in Optical Cavities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Resonance%20Energy%20Transfer%20Theory:%20Applications%20to%20Vibrational%20Energy%20Flow%20in%20Optical%20Cavities&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Cao,%20Jianshu&rft.date=2022-12-01&rft.volume=13&rft.issue=47&rft.spage=10943&rft.epage=10951&rft.pages=10943-10951&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.2c02707&rft_dat=%3Cproquest_cross%3E2738493848%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2738493848&rft_id=info:pmid/&rfr_iscdi=true |