Zinc-Acetate-Amine Complexes as Precursors to ZnO and the Effect of the Amine on Nanoparticle Morphology, Size, and Photocatalytic Activity
Zinc oxide is an environmentally friendly and readily synthesized semiconductor with many industrial applications. ZnO powders were prepared by alkali precipitation using different [Zn(acetate) (amine) ] compounds to alter the particle size and aspect ratio. Slow precipitations from 95 °C solutions...
Gespeichert in:
Veröffentlicht in: | Catalysts 2022-10, Vol.12 (10), p.1099 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 1099 |
container_title | Catalysts |
container_volume | 12 |
creator | Harris, Jerry D Wade, Emily A Ellison, Emmaline G Pena, Cecelia C Bryant, Stephen C McKibben, Nicholas L Christy, Allison J Laughlin, Kevin O Harris, Ashley E Goettsche, Kenrik V Larson, Chad E Hubbard, Seth M Cowen, Jonathan E Eixenberger, Josh Estrada, David Chase, Jennifer R |
description | Zinc oxide is an environmentally friendly and readily synthesized semiconductor with many industrial applications. ZnO powders were prepared by alkali precipitation using different [Zn(acetate)
(amine)
] compounds to alter the particle size and aspect ratio. Slow precipitations from 95 °C solutions produced micron-scale particles with morphologies of hexagonal plates, rods, and needles, depending on the precursor used. Powders prepared at 65 °C with rapid precipitation yielded particles with minimal morphology differences, but particle size was dependent on the precursor used. The smallest particles were produced using precursors that yielded crystals with low aspect ratios during high-temperature synthesis. Particles produced during rapid synthesis had sizes ranging from 21-45 nm. The materials were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, BET, and diffuse reflectance. The materials prepared using precursors with less-volatile amines were found to retain more organic material than ZnO produced using precursors with more volatile amines. The amount of organic material associated with the nanoparticles influenced the photocatalytic activity of the ZnO, with powders containing less organic material producing faster rate constants for the decolorizing of malachite green solutions under ultraviolet illumination, independent of particle size. [Zn(acetate)
(hydrazine)
] produced ZnO with the fastest rate constant and was recycled five times for dye degradation studies that revealed minimal to no reduction in catalytic efficiency. |
doi_str_mv | 10.3390/catal12101099 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2738493556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2728449643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-2068b7b93fed6c855afbd22ace741b71b3a67ed3a7791bb49053f29eb82916d63</originalsourceid><addsrcrecordid>eNpdkUtP3DAUha0KBAhmybay1A0LUvyKHS9HI0or8RiJdsMmsp0bJiiJU9upGP4Cf7phhlbA3dx7pe8cHekgdEzJV841OXMmmZYySijR-hM6YETxTHAhdt7c-2gW4wOZRlNe0HwP7XMpSK6kPEDPd03vsrmDZBJk867pAS98N7TwCBGbiJcB3BiiDxEnj-_6G2z6CqcV4PO6BpewrzffVup7fG16P5iQGtcCvvJhWPnW369P8W3zBKcb9XLlk99kX08YnrvU_GnS-gjt1qaNMHvdh-jXt_Ofi-_Z5c3Fj8X8MnNckpQxIgurrOY1VNIVeW5qWzFmHChBraKWG6mg4kYpTa0VmuS8ZhpswTSVleSH6GTrOwT_e4SYyq6JDtrW9ODHWDLFC6F5nr-gXz6gD34M_ZRuolghhJaCT1S2pVzwMQaoyyE0nQnrkpLypajyXVET__nVdbQdVP_pf7Xwv9f3ju0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728449643</pqid></control><display><type>article</type><title>Zinc-Acetate-Amine Complexes as Precursors to ZnO and the Effect of the Amine on Nanoparticle Morphology, Size, and Photocatalytic Activity</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Harris, Jerry D ; Wade, Emily A ; Ellison, Emmaline G ; Pena, Cecelia C ; Bryant, Stephen C ; McKibben, Nicholas L ; Christy, Allison J ; Laughlin, Kevin O ; Harris, Ashley E ; Goettsche, Kenrik V ; Larson, Chad E ; Hubbard, Seth M ; Cowen, Jonathan E ; Eixenberger, Josh ; Estrada, David ; Chase, Jennifer R</creator><creatorcontrib>Harris, Jerry D ; Wade, Emily A ; Ellison, Emmaline G ; Pena, Cecelia C ; Bryant, Stephen C ; McKibben, Nicholas L ; Christy, Allison J ; Laughlin, Kevin O ; Harris, Ashley E ; Goettsche, Kenrik V ; Larson, Chad E ; Hubbard, Seth M ; Cowen, Jonathan E ; Eixenberger, Josh ; Estrada, David ; Chase, Jennifer R</creatorcontrib><description>Zinc oxide is an environmentally friendly and readily synthesized semiconductor with many industrial applications. ZnO powders were prepared by alkali precipitation using different [Zn(acetate)
(amine)
] compounds to alter the particle size and aspect ratio. Slow precipitations from 95 °C solutions produced micron-scale particles with morphologies of hexagonal plates, rods, and needles, depending on the precursor used. Powders prepared at 65 °C with rapid precipitation yielded particles with minimal morphology differences, but particle size was dependent on the precursor used. The smallest particles were produced using precursors that yielded crystals with low aspect ratios during high-temperature synthesis. Particles produced during rapid synthesis had sizes ranging from 21-45 nm. The materials were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, BET, and diffuse reflectance. The materials prepared using precursors with less-volatile amines were found to retain more organic material than ZnO produced using precursors with more volatile amines. The amount of organic material associated with the nanoparticles influenced the photocatalytic activity of the ZnO, with powders containing less organic material producing faster rate constants for the decolorizing of malachite green solutions under ultraviolet illumination, independent of particle size. [Zn(acetate)
(hydrazine)
] produced ZnO with the fastest rate constant and was recycled five times for dye degradation studies that revealed minimal to no reduction in catalytic efficiency.</description><identifier>ISSN: 2073-4344</identifier><identifier>EISSN: 2073-4344</identifier><identifier>DOI: 10.3390/catal12101099</identifier><identifier>PMID: 36405766</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Amines ; Aspect ratio ; Catalysts ; Catalytic activity ; Chemical reactions ; Composite materials ; Crystal structure ; Decoloring ; Electron microscopy ; Graphene ; High temperature ; Hydrazines ; Industrial applications ; Ligands ; Malachite green ; Morphology ; Nanoparticles ; Particle size ; Photocatalysis ; Precursors ; Rate constants ; Synthesis ; Thermogravimetric analysis ; Zinc oxide ; Zinc oxides</subject><ispartof>Catalysts, 2022-10, Vol.12 (10), p.1099</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-2068b7b93fed6c855afbd22ace741b71b3a67ed3a7791bb49053f29eb82916d63</citedby><cites>FETCH-LOGICAL-c360t-2068b7b93fed6c855afbd22ace741b71b3a67ed3a7791bb49053f29eb82916d63</cites><orcidid>0000-0001-5894-0773 ; 0000-0002-8701-1129 ; 0000-0003-0377-1495 ; 0000-0002-9981-3145 ; 0000-0001-7661-4090 ; 0000-0002-1546-5682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36405766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harris, Jerry D</creatorcontrib><creatorcontrib>Wade, Emily A</creatorcontrib><creatorcontrib>Ellison, Emmaline G</creatorcontrib><creatorcontrib>Pena, Cecelia C</creatorcontrib><creatorcontrib>Bryant, Stephen C</creatorcontrib><creatorcontrib>McKibben, Nicholas L</creatorcontrib><creatorcontrib>Christy, Allison J</creatorcontrib><creatorcontrib>Laughlin, Kevin O</creatorcontrib><creatorcontrib>Harris, Ashley E</creatorcontrib><creatorcontrib>Goettsche, Kenrik V</creatorcontrib><creatorcontrib>Larson, Chad E</creatorcontrib><creatorcontrib>Hubbard, Seth M</creatorcontrib><creatorcontrib>Cowen, Jonathan E</creatorcontrib><creatorcontrib>Eixenberger, Josh</creatorcontrib><creatorcontrib>Estrada, David</creatorcontrib><creatorcontrib>Chase, Jennifer R</creatorcontrib><title>Zinc-Acetate-Amine Complexes as Precursors to ZnO and the Effect of the Amine on Nanoparticle Morphology, Size, and Photocatalytic Activity</title><title>Catalysts</title><addtitle>Catalysts</addtitle><description>Zinc oxide is an environmentally friendly and readily synthesized semiconductor with many industrial applications. ZnO powders were prepared by alkali precipitation using different [Zn(acetate)
(amine)
] compounds to alter the particle size and aspect ratio. Slow precipitations from 95 °C solutions produced micron-scale particles with morphologies of hexagonal plates, rods, and needles, depending on the precursor used. Powders prepared at 65 °C with rapid precipitation yielded particles with minimal morphology differences, but particle size was dependent on the precursor used. The smallest particles were produced using precursors that yielded crystals with low aspect ratios during high-temperature synthesis. Particles produced during rapid synthesis had sizes ranging from 21-45 nm. The materials were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, BET, and diffuse reflectance. The materials prepared using precursors with less-volatile amines were found to retain more organic material than ZnO produced using precursors with more volatile amines. The amount of organic material associated with the nanoparticles influenced the photocatalytic activity of the ZnO, with powders containing less organic material producing faster rate constants for the decolorizing of malachite green solutions under ultraviolet illumination, independent of particle size. [Zn(acetate)
(hydrazine)
] produced ZnO with the fastest rate constant and was recycled five times for dye degradation studies that revealed minimal to no reduction in catalytic efficiency.</description><subject>Amines</subject><subject>Aspect ratio</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical reactions</subject><subject>Composite materials</subject><subject>Crystal structure</subject><subject>Decoloring</subject><subject>Electron microscopy</subject><subject>Graphene</subject><subject>High temperature</subject><subject>Hydrazines</subject><subject>Industrial applications</subject><subject>Ligands</subject><subject>Malachite green</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Particle size</subject><subject>Photocatalysis</subject><subject>Precursors</subject><subject>Rate constants</subject><subject>Synthesis</subject><subject>Thermogravimetric analysis</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>2073-4344</issn><issn>2073-4344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkUtP3DAUha0KBAhmybay1A0LUvyKHS9HI0or8RiJdsMmsp0bJiiJU9upGP4Cf7phhlbA3dx7pe8cHekgdEzJV841OXMmmZYySijR-hM6YETxTHAhdt7c-2gW4wOZRlNe0HwP7XMpSK6kPEDPd03vsrmDZBJk867pAS98N7TwCBGbiJcB3BiiDxEnj-_6G2z6CqcV4PO6BpewrzffVup7fG16P5iQGtcCvvJhWPnW369P8W3zBKcb9XLlk99kX08YnrvU_GnS-gjt1qaNMHvdh-jXt_Ofi-_Z5c3Fj8X8MnNckpQxIgurrOY1VNIVeW5qWzFmHChBraKWG6mg4kYpTa0VmuS8ZhpswTSVleSH6GTrOwT_e4SYyq6JDtrW9ODHWDLFC6F5nr-gXz6gD34M_ZRuolghhJaCT1S2pVzwMQaoyyE0nQnrkpLypajyXVET__nVdbQdVP_pf7Xwv9f3ju0</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Harris, Jerry D</creator><creator>Wade, Emily A</creator><creator>Ellison, Emmaline G</creator><creator>Pena, Cecelia C</creator><creator>Bryant, Stephen C</creator><creator>McKibben, Nicholas L</creator><creator>Christy, Allison J</creator><creator>Laughlin, Kevin O</creator><creator>Harris, Ashley E</creator><creator>Goettsche, Kenrik V</creator><creator>Larson, Chad E</creator><creator>Hubbard, Seth M</creator><creator>Cowen, Jonathan E</creator><creator>Eixenberger, Josh</creator><creator>Estrada, David</creator><creator>Chase, Jennifer R</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5894-0773</orcidid><orcidid>https://orcid.org/0000-0002-8701-1129</orcidid><orcidid>https://orcid.org/0000-0003-0377-1495</orcidid><orcidid>https://orcid.org/0000-0002-9981-3145</orcidid><orcidid>https://orcid.org/0000-0001-7661-4090</orcidid><orcidid>https://orcid.org/0000-0002-1546-5682</orcidid></search><sort><creationdate>20221001</creationdate><title>Zinc-Acetate-Amine Complexes as Precursors to ZnO and the Effect of the Amine on Nanoparticle Morphology, Size, and Photocatalytic Activity</title><author>Harris, Jerry D ; Wade, Emily A ; Ellison, Emmaline G ; Pena, Cecelia C ; Bryant, Stephen C ; McKibben, Nicholas L ; Christy, Allison J ; Laughlin, Kevin O ; Harris, Ashley E ; Goettsche, Kenrik V ; Larson, Chad E ; Hubbard, Seth M ; Cowen, Jonathan E ; Eixenberger, Josh ; Estrada, David ; Chase, Jennifer R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-2068b7b93fed6c855afbd22ace741b71b3a67ed3a7791bb49053f29eb82916d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amines</topic><topic>Aspect ratio</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical reactions</topic><topic>Composite materials</topic><topic>Crystal structure</topic><topic>Decoloring</topic><topic>Electron microscopy</topic><topic>Graphene</topic><topic>High temperature</topic><topic>Hydrazines</topic><topic>Industrial applications</topic><topic>Ligands</topic><topic>Malachite green</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Particle size</topic><topic>Photocatalysis</topic><topic>Precursors</topic><topic>Rate constants</topic><topic>Synthesis</topic><topic>Thermogravimetric analysis</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harris, Jerry D</creatorcontrib><creatorcontrib>Wade, Emily A</creatorcontrib><creatorcontrib>Ellison, Emmaline G</creatorcontrib><creatorcontrib>Pena, Cecelia C</creatorcontrib><creatorcontrib>Bryant, Stephen C</creatorcontrib><creatorcontrib>McKibben, Nicholas L</creatorcontrib><creatorcontrib>Christy, Allison J</creatorcontrib><creatorcontrib>Laughlin, Kevin O</creatorcontrib><creatorcontrib>Harris, Ashley E</creatorcontrib><creatorcontrib>Goettsche, Kenrik V</creatorcontrib><creatorcontrib>Larson, Chad E</creatorcontrib><creatorcontrib>Hubbard, Seth M</creatorcontrib><creatorcontrib>Cowen, Jonathan E</creatorcontrib><creatorcontrib>Eixenberger, Josh</creatorcontrib><creatorcontrib>Estrada, David</creatorcontrib><creatorcontrib>Chase, Jennifer R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Catalysts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harris, Jerry D</au><au>Wade, Emily A</au><au>Ellison, Emmaline G</au><au>Pena, Cecelia C</au><au>Bryant, Stephen C</au><au>McKibben, Nicholas L</au><au>Christy, Allison J</au><au>Laughlin, Kevin O</au><au>Harris, Ashley E</au><au>Goettsche, Kenrik V</au><au>Larson, Chad E</au><au>Hubbard, Seth M</au><au>Cowen, Jonathan E</au><au>Eixenberger, Josh</au><au>Estrada, David</au><au>Chase, Jennifer R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zinc-Acetate-Amine Complexes as Precursors to ZnO and the Effect of the Amine on Nanoparticle Morphology, Size, and Photocatalytic Activity</atitle><jtitle>Catalysts</jtitle><addtitle>Catalysts</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>12</volume><issue>10</issue><spage>1099</spage><pages>1099-</pages><issn>2073-4344</issn><eissn>2073-4344</eissn><abstract>Zinc oxide is an environmentally friendly and readily synthesized semiconductor with many industrial applications. ZnO powders were prepared by alkali precipitation using different [Zn(acetate)
(amine)
] compounds to alter the particle size and aspect ratio. Slow precipitations from 95 °C solutions produced micron-scale particles with morphologies of hexagonal plates, rods, and needles, depending on the precursor used. Powders prepared at 65 °C with rapid precipitation yielded particles with minimal morphology differences, but particle size was dependent on the precursor used. The smallest particles were produced using precursors that yielded crystals with low aspect ratios during high-temperature synthesis. Particles produced during rapid synthesis had sizes ranging from 21-45 nm. The materials were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, BET, and diffuse reflectance. The materials prepared using precursors with less-volatile amines were found to retain more organic material than ZnO produced using precursors with more volatile amines. The amount of organic material associated with the nanoparticles influenced the photocatalytic activity of the ZnO, with powders containing less organic material producing faster rate constants for the decolorizing of malachite green solutions under ultraviolet illumination, independent of particle size. [Zn(acetate)
(hydrazine)
] produced ZnO with the fastest rate constant and was recycled five times for dye degradation studies that revealed minimal to no reduction in catalytic efficiency.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36405766</pmid><doi>10.3390/catal12101099</doi><orcidid>https://orcid.org/0000-0001-5894-0773</orcidid><orcidid>https://orcid.org/0000-0002-8701-1129</orcidid><orcidid>https://orcid.org/0000-0003-0377-1495</orcidid><orcidid>https://orcid.org/0000-0002-9981-3145</orcidid><orcidid>https://orcid.org/0000-0001-7661-4090</orcidid><orcidid>https://orcid.org/0000-0002-1546-5682</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4344 |
ispartof | Catalysts, 2022-10, Vol.12 (10), p.1099 |
issn | 2073-4344 2073-4344 |
language | eng |
recordid | cdi_proquest_miscellaneous_2738493556 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Amines Aspect ratio Catalysts Catalytic activity Chemical reactions Composite materials Crystal structure Decoloring Electron microscopy Graphene High temperature Hydrazines Industrial applications Ligands Malachite green Morphology Nanoparticles Particle size Photocatalysis Precursors Rate constants Synthesis Thermogravimetric analysis Zinc oxide Zinc oxides |
title | Zinc-Acetate-Amine Complexes as Precursors to ZnO and the Effect of the Amine on Nanoparticle Morphology, Size, and Photocatalytic Activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A02%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zinc-Acetate-Amine%20Complexes%20as%20Precursors%20to%20ZnO%20and%20the%20Effect%20of%20the%20Amine%20on%20Nanoparticle%20Morphology,%20Size,%20and%20Photocatalytic%20Activity&rft.jtitle=Catalysts&rft.au=Harris,%20Jerry%20D&rft.date=2022-10-01&rft.volume=12&rft.issue=10&rft.spage=1099&rft.pages=1099-&rft.issn=2073-4344&rft.eissn=2073-4344&rft_id=info:doi/10.3390/catal12101099&rft_dat=%3Cproquest_cross%3E2728449643%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728449643&rft_id=info:pmid/36405766&rfr_iscdi=true |