Formulation of Mindlin-Engesser model for stiffened plate vibration

In this paper, a Mindlin-Engesser model is developed for the vibration analysis of moderately thick plates with arbitrarily oriented stiffeners. The theoretical derivation incorporates the Mindlin theory to account for the effects of transverse shear deformation and rotary inertia of plates, and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 1995-02, Vol.120 (3), p.339-353
Hauptverfasser: Liew, K.M., Xiang, Y., Kitipornchai, S., Meek, J.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 353
container_issue 3
container_start_page 339
container_title Computer methods in applied mechanics and engineering
container_volume 120
creator Liew, K.M.
Xiang, Y.
Kitipornchai, S.
Meek, J.L.
description In this paper, a Mindlin-Engesser model is developed for the vibration analysis of moderately thick plates with arbitrarily oriented stiffeners. The theoretical derivation incorporates the Mindlin theory to account for the effects of transverse shear deformation and rotary inertia of plates, and the Engesser theory to account for the shear deformation of stiffeners with the inclusion of torsion effect. In the method of solution, the resulting energy functionals are minimized using the Ritz procedure with a set of admissible two-dimensional functions expressed in the form of simple polynomials. The key kinematic feature of these shape functions is that they are boundary oriented and no boundary losses are introduced as in discretization methods. With the aim of demonstrating the applicability and versatility of the method, numerical examples including plates of various shapes with arbitrarily oriented stiffeners are presented. Several findings and conclusions regarding the method have been highlighted and discussed.
doi_str_mv 10.1016/0045-7825(94)00064-T
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27383963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>004578259400064T</els_id><sourcerecordid>27383963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-f282fb9a8a7c0fe1d420745381e6cb53701e5a1594e64294d3abda1c46b61cc93</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKv_wMUsRHQxmtdkko0gpVWh4qauQyZzI5FpUpNpwX_v9EGXru7mO-dwP4SuCX4gmIhHjHlV1pJWd4rfY4wFLxcnaERkrUpKmDxFoyNyji5y_h4gLAkdockspuW6M72PoYiuePeh7Xwop-ELcoZULGMLXeFiKnLvnYMAbbEaeCg2vkm73CU6c6bLcHW4Y_Q5my4mr-X84-Vt8jwvLRO8Lx2V1DXKSFNb7IC0nOKaV0wSELapWI0JVIZUioPgVPGWmaY1xHLRCGKtYmN0u-9dpfizhtzrpc8Wus4EiOusac0kU4ININ-DNsWcEzi9Sn5p0q8mWG-N6a0OvdWhFdc7Y3oxxG4O_SZb07lkgvX5mGVCSUHEgD3tMRh-3XhIOlsPwULrE9het9H_v_MH8Vt_LQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27383963</pqid></control><display><type>article</type><title>Formulation of Mindlin-Engesser model for stiffened plate vibration</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Liew, K.M. ; Xiang, Y. ; Kitipornchai, S. ; Meek, J.L.</creator><creatorcontrib>Liew, K.M. ; Xiang, Y. ; Kitipornchai, S. ; Meek, J.L.</creatorcontrib><description>In this paper, a Mindlin-Engesser model is developed for the vibration analysis of moderately thick plates with arbitrarily oriented stiffeners. The theoretical derivation incorporates the Mindlin theory to account for the effects of transverse shear deformation and rotary inertia of plates, and the Engesser theory to account for the shear deformation of stiffeners with the inclusion of torsion effect. In the method of solution, the resulting energy functionals are minimized using the Ritz procedure with a set of admissible two-dimensional functions expressed in the form of simple polynomials. The key kinematic feature of these shape functions is that they are boundary oriented and no boundary losses are introduced as in discretization methods. With the aim of demonstrating the applicability and versatility of the method, numerical examples including plates of various shapes with arbitrarily oriented stiffeners are presented. Several findings and conclusions regarding the method have been highlighted and discussed.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/0045-7825(94)00064-T</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Vibrations and mechanical waves</subject><ispartof>Computer methods in applied mechanics and engineering, 1995-02, Vol.120 (3), p.339-353</ispartof><rights>1995</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-f282fb9a8a7c0fe1d420745381e6cb53701e5a1594e64294d3abda1c46b61cc93</citedby><cites>FETCH-LOGICAL-c364t-f282fb9a8a7c0fe1d420745381e6cb53701e5a1594e64294d3abda1c46b61cc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0045-7825(94)00064-T$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3698616$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liew, K.M.</creatorcontrib><creatorcontrib>Xiang, Y.</creatorcontrib><creatorcontrib>Kitipornchai, S.</creatorcontrib><creatorcontrib>Meek, J.L.</creatorcontrib><title>Formulation of Mindlin-Engesser model for stiffened plate vibration</title><title>Computer methods in applied mechanics and engineering</title><description>In this paper, a Mindlin-Engesser model is developed for the vibration analysis of moderately thick plates with arbitrarily oriented stiffeners. The theoretical derivation incorporates the Mindlin theory to account for the effects of transverse shear deformation and rotary inertia of plates, and the Engesser theory to account for the shear deformation of stiffeners with the inclusion of torsion effect. In the method of solution, the resulting energy functionals are minimized using the Ritz procedure with a set of admissible two-dimensional functions expressed in the form of simple polynomials. The key kinematic feature of these shape functions is that they are boundary oriented and no boundary losses are introduced as in discretization methods. With the aim of demonstrating the applicability and versatility of the method, numerical examples including plates of various shapes with arbitrarily oriented stiffeners are presented. Several findings and conclusions regarding the method have been highlighted and discussed.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Vibrations and mechanical waves</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKv_wMUsRHQxmtdkko0gpVWh4qauQyZzI5FpUpNpwX_v9EGXru7mO-dwP4SuCX4gmIhHjHlV1pJWd4rfY4wFLxcnaERkrUpKmDxFoyNyji5y_h4gLAkdockspuW6M72PoYiuePeh7Xwop-ELcoZULGMLXeFiKnLvnYMAbbEaeCg2vkm73CU6c6bLcHW4Y_Q5my4mr-X84-Vt8jwvLRO8Lx2V1DXKSFNb7IC0nOKaV0wSELapWI0JVIZUioPgVPGWmaY1xHLRCGKtYmN0u-9dpfizhtzrpc8Wus4EiOusac0kU4ININ-DNsWcEzi9Sn5p0q8mWG-N6a0OvdWhFdc7Y3oxxG4O_SZb07lkgvX5mGVCSUHEgD3tMRh-3XhIOlsPwULrE9het9H_v_MH8Vt_LQ</recordid><startdate>19950201</startdate><enddate>19950201</enddate><creator>Liew, K.M.</creator><creator>Xiang, Y.</creator><creator>Kitipornchai, S.</creator><creator>Meek, J.L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>19950201</creationdate><title>Formulation of Mindlin-Engesser model for stiffened plate vibration</title><author>Liew, K.M. ; Xiang, Y. ; Kitipornchai, S. ; Meek, J.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-f282fb9a8a7c0fe1d420745381e6cb53701e5a1594e64294d3abda1c46b61cc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Vibrations and mechanical waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liew, K.M.</creatorcontrib><creatorcontrib>Xiang, Y.</creatorcontrib><creatorcontrib>Kitipornchai, S.</creatorcontrib><creatorcontrib>Meek, J.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liew, K.M.</au><au>Xiang, Y.</au><au>Kitipornchai, S.</au><au>Meek, J.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formulation of Mindlin-Engesser model for stiffened plate vibration</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>1995-02-01</date><risdate>1995</risdate><volume>120</volume><issue>3</issue><spage>339</spage><epage>353</epage><pages>339-353</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>In this paper, a Mindlin-Engesser model is developed for the vibration analysis of moderately thick plates with arbitrarily oriented stiffeners. The theoretical derivation incorporates the Mindlin theory to account for the effects of transverse shear deformation and rotary inertia of plates, and the Engesser theory to account for the shear deformation of stiffeners with the inclusion of torsion effect. In the method of solution, the resulting energy functionals are minimized using the Ritz procedure with a set of admissible two-dimensional functions expressed in the form of simple polynomials. The key kinematic feature of these shape functions is that they are boundary oriented and no boundary losses are introduced as in discretization methods. With the aim of demonstrating the applicability and versatility of the method, numerical examples including plates of various shapes with arbitrarily oriented stiffeners are presented. Several findings and conclusions regarding the method have been highlighted and discussed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0045-7825(94)00064-T</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 1995-02, Vol.120 (3), p.339-353
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_27383963
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Vibrations and mechanical waves
title Formulation of Mindlin-Engesser model for stiffened plate vibration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A09%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formulation%20of%20Mindlin-Engesser%20model%20for%20stiffened%20plate%20vibration&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Liew,%20K.M.&rft.date=1995-02-01&rft.volume=120&rft.issue=3&rft.spage=339&rft.epage=353&rft.pages=339-353&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/0045-7825(94)00064-T&rft_dat=%3Cproquest_cross%3E27383963%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27383963&rft_id=info:pmid/&rft_els_id=004578259400064T&rfr_iscdi=true