Genomic potential for exopolysaccharide production and differential polysaccharide degradation in closely related Alteromonas sp. PRIM-21 and Alteromonas fortis 1T

Members of the genus Alteromonas  are widely distributed in diverse marine environments and are often associated with marine organisms. Their ability to produce exopolysaccharides (EPS) and depolymerize sulfated algal polysaccharides has provided industrial importance to some species. Here, we descr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antonie van Leeuwenhoek 2023, Vol.116 (1), p.39-51
Hauptverfasser: Rekha, Punchappady Devasya, Shastry, Rajesh P., Hameed, Asif, Ghate, Sudeep D., Arun, Ananthapadmanabha Bhagwath, Athmika, Nagaraj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue 1
container_start_page 39
container_title Antonie van Leeuwenhoek
container_volume 116
creator Rekha, Punchappady Devasya
Shastry, Rajesh P.
Hameed, Asif
Ghate, Sudeep D.
Arun, Ananthapadmanabha Bhagwath
Athmika, Nagaraj
description Members of the genus Alteromonas  are widely distributed in diverse marine environments and are often associated with marine organisms. Their ability to produce exopolysaccharides (EPS) and depolymerize sulfated algal polysaccharides has provided industrial importance to some species. Here, we describe the draft genome of an algae-associated strain namely, Alteromonas  sp. PRIM-21 isolated from the southwest coast of India to understand the EPS biosynthetic pathways as well as polysaccharide depolymerization system in comparison to the closely related strain  Alteromonas fortis  1 T that shares 99.8% 16S rRNA gene sequence similarity. Whole-genome shotgun sequencing of Alteromonas sp. PRIM-21 yielded 50 contigs with a total length of 4,638,422 bp having 43.86% GC content. The resultant genome shared 95.9% OrthoANI value with  A. fortis  1  T , and contained 4125 predicted protein-coding genes, 71 tRNA and 10 rRNA genes. Genes involved in Wzx/Wzy-, ABC transporter- and synthase-dependent pathways for EPS production and secretion were common in both Alteromonas sp. PRIM-21 and  A. fortis  1 T . However, the distribution of carbohydrate-active enzymes (CAZymes) was heterogeneous. The strain PRIM-21 harbored polysaccharide lyases for the degradation of alginate, ulvan, arabinogalactan and chondroitin. This was further validated from the culture-based assays using seven different polysaccharides. The depolymerizing ability of the bacteria may be useful in deriving nutrients from the biopolymers produced in the algal host while the EPS biosynthesis may provide additional advantages for life in the stressful marine environment. The results also highlight the genetic heterogeneity in terms of polysaccharide utilization among the closely related  Alteromonas  strains.
doi_str_mv 10.1007/s10482-022-01796-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2738195736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2738195736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-2d22251a975b1dd22a6a981e302f90d329dede2ff22f3d58235bfc6cb4cef02a3</originalsourceid><addsrcrecordid>eNp9kdFqVDEQhoMouNa-gFcBb7w5NZnsOUkuS9FaqFhKex2yyaSmZJNjchbc5_FFjbsFpRdeDMMw3_8zw0_IO87OOGPyY-NsrWBg0ItLPQ3qBVnxUcKgJ61fkhVjTAwTk_CavGntsY96UnJFfl1iLtvo6FwWzEu0iYZSKf4sc0n7Zp37bmv0SOda_M4tsWRqs6c-hoD1SfEM9fhQrbcHNmbqUmmY9rRisgt6ep4WrGVbsm20zWf05vbq6wD8YPvvrt-xxEb53VvyKtjU8PSpn5D7z5_uLr4M198ury7OrwcHCpYBPACM3Go5brjvg52sVhwFg6CZF6A9eoQQAILwowIxboKb3GbtMDCw4oR8OPr2X3_ssC1mG5vDlGzGsmsGpFBcj1JMHX3_DH0su5r7dZ2a-BqUltApOFKultYqBjPXuLV1bzgzf3Izx9xMz80ccjOqi8RR1DqcH7D-tf6P6jcvu55s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761428972</pqid></control><display><type>article</type><title>Genomic potential for exopolysaccharide production and differential polysaccharide degradation in closely related Alteromonas sp. PRIM-21 and Alteromonas fortis 1T</title><source>Springer Nature - Complete Springer Journals</source><creator>Rekha, Punchappady Devasya ; Shastry, Rajesh P. ; Hameed, Asif ; Ghate, Sudeep D. ; Arun, Ananthapadmanabha Bhagwath ; Athmika, Nagaraj</creator><creatorcontrib>Rekha, Punchappady Devasya ; Shastry, Rajesh P. ; Hameed, Asif ; Ghate, Sudeep D. ; Arun, Ananthapadmanabha Bhagwath ; Athmika, Nagaraj</creatorcontrib><description>Members of the genus Alteromonas  are widely distributed in diverse marine environments and are often associated with marine organisms. Their ability to produce exopolysaccharides (EPS) and depolymerize sulfated algal polysaccharides has provided industrial importance to some species. Here, we describe the draft genome of an algae-associated strain namely, Alteromonas  sp. PRIM-21 isolated from the southwest coast of India to understand the EPS biosynthetic pathways as well as polysaccharide depolymerization system in comparison to the closely related strain  Alteromonas fortis  1 T that shares 99.8% 16S rRNA gene sequence similarity. Whole-genome shotgun sequencing of Alteromonas sp. PRIM-21 yielded 50 contigs with a total length of 4,638,422 bp having 43.86% GC content. The resultant genome shared 95.9% OrthoANI value with  A. fortis  1  T , and contained 4125 predicted protein-coding genes, 71 tRNA and 10 rRNA genes. Genes involved in Wzx/Wzy-, ABC transporter- and synthase-dependent pathways for EPS production and secretion were common in both Alteromonas sp. PRIM-21 and  A. fortis  1 T . However, the distribution of carbohydrate-active enzymes (CAZymes) was heterogeneous. The strain PRIM-21 harbored polysaccharide lyases for the degradation of alginate, ulvan, arabinogalactan and chondroitin. This was further validated from the culture-based assays using seven different polysaccharides. The depolymerizing ability of the bacteria may be useful in deriving nutrients from the biopolymers produced in the algal host while the EPS biosynthesis may provide additional advantages for life in the stressful marine environment. The results also highlight the genetic heterogeneity in terms of polysaccharide utilization among the closely related  Alteromonas  strains.</description><identifier>ISSN: 0003-6072</identifier><identifier>EISSN: 1572-9699</identifier><identifier>DOI: 10.1007/s10482-022-01796-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>ABC transporter ; Algae ; Alginates ; Alginic acid ; Alteromonas ; Arabinogalactan ; Biomedical and Life Sciences ; Biopolymers ; Biosynthesis ; Carbohydrates ; Degradation ; Depolymerization ; Exopolysaccharides ; Gene sequencing ; Genes ; Genomes ; Heterogeneity ; Life Sciences ; Marine environment ; Marine organisms ; Medical Microbiology ; Microbiology ; Nucleotide sequence ; Nutrients ; Original Paper ; Plant Sciences ; Polysaccharides ; rRNA 16S ; Saccharides ; Soil Science &amp; Conservation ; tRNA</subject><ispartof>Antonie van Leeuwenhoek, 2023, Vol.116 (1), p.39-51</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-2d22251a975b1dd22a6a981e302f90d329dede2ff22f3d58235bfc6cb4cef02a3</citedby><cites>FETCH-LOGICAL-c282t-2d22251a975b1dd22a6a981e302f90d329dede2ff22f3d58235bfc6cb4cef02a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10482-022-01796-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10482-022-01796-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Rekha, Punchappady Devasya</creatorcontrib><creatorcontrib>Shastry, Rajesh P.</creatorcontrib><creatorcontrib>Hameed, Asif</creatorcontrib><creatorcontrib>Ghate, Sudeep D.</creatorcontrib><creatorcontrib>Arun, Ananthapadmanabha Bhagwath</creatorcontrib><creatorcontrib>Athmika, Nagaraj</creatorcontrib><title>Genomic potential for exopolysaccharide production and differential polysaccharide degradation in closely related Alteromonas sp. PRIM-21 and Alteromonas fortis 1T</title><title>Antonie van Leeuwenhoek</title><addtitle>Antonie van Leeuwenhoek</addtitle><description>Members of the genus Alteromonas  are widely distributed in diverse marine environments and are often associated with marine organisms. Their ability to produce exopolysaccharides (EPS) and depolymerize sulfated algal polysaccharides has provided industrial importance to some species. Here, we describe the draft genome of an algae-associated strain namely, Alteromonas  sp. PRIM-21 isolated from the southwest coast of India to understand the EPS biosynthetic pathways as well as polysaccharide depolymerization system in comparison to the closely related strain  Alteromonas fortis  1 T that shares 99.8% 16S rRNA gene sequence similarity. Whole-genome shotgun sequencing of Alteromonas sp. PRIM-21 yielded 50 contigs with a total length of 4,638,422 bp having 43.86% GC content. The resultant genome shared 95.9% OrthoANI value with  A. fortis  1  T , and contained 4125 predicted protein-coding genes, 71 tRNA and 10 rRNA genes. Genes involved in Wzx/Wzy-, ABC transporter- and synthase-dependent pathways for EPS production and secretion were common in both Alteromonas sp. PRIM-21 and  A. fortis  1 T . However, the distribution of carbohydrate-active enzymes (CAZymes) was heterogeneous. The strain PRIM-21 harbored polysaccharide lyases for the degradation of alginate, ulvan, arabinogalactan and chondroitin. This was further validated from the culture-based assays using seven different polysaccharides. The depolymerizing ability of the bacteria may be useful in deriving nutrients from the biopolymers produced in the algal host while the EPS biosynthesis may provide additional advantages for life in the stressful marine environment. The results also highlight the genetic heterogeneity in terms of polysaccharide utilization among the closely related  Alteromonas  strains.</description><subject>ABC transporter</subject><subject>Algae</subject><subject>Alginates</subject><subject>Alginic acid</subject><subject>Alteromonas</subject><subject>Arabinogalactan</subject><subject>Biomedical and Life Sciences</subject><subject>Biopolymers</subject><subject>Biosynthesis</subject><subject>Carbohydrates</subject><subject>Degradation</subject><subject>Depolymerization</subject><subject>Exopolysaccharides</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genomes</subject><subject>Heterogeneity</subject><subject>Life Sciences</subject><subject>Marine environment</subject><subject>Marine organisms</subject><subject>Medical Microbiology</subject><subject>Microbiology</subject><subject>Nucleotide sequence</subject><subject>Nutrients</subject><subject>Original Paper</subject><subject>Plant Sciences</subject><subject>Polysaccharides</subject><subject>rRNA 16S</subject><subject>Saccharides</subject><subject>Soil Science &amp; Conservation</subject><subject>tRNA</subject><issn>0003-6072</issn><issn>1572-9699</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kdFqVDEQhoMouNa-gFcBb7w5NZnsOUkuS9FaqFhKex2yyaSmZJNjchbc5_FFjbsFpRdeDMMw3_8zw0_IO87OOGPyY-NsrWBg0ItLPQ3qBVnxUcKgJ61fkhVjTAwTk_CavGntsY96UnJFfl1iLtvo6FwWzEu0iYZSKf4sc0n7Zp37bmv0SOda_M4tsWRqs6c-hoD1SfEM9fhQrbcHNmbqUmmY9rRisgt6ep4WrGVbsm20zWf05vbq6wD8YPvvrt-xxEb53VvyKtjU8PSpn5D7z5_uLr4M198ury7OrwcHCpYBPACM3Go5brjvg52sVhwFg6CZF6A9eoQQAILwowIxboKb3GbtMDCw4oR8OPr2X3_ssC1mG5vDlGzGsmsGpFBcj1JMHX3_DH0su5r7dZ2a-BqUltApOFKultYqBjPXuLV1bzgzf3Izx9xMz80ccjOqi8RR1DqcH7D-tf6P6jcvu55s</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Rekha, Punchappady Devasya</creator><creator>Shastry, Rajesh P.</creator><creator>Hameed, Asif</creator><creator>Ghate, Sudeep D.</creator><creator>Arun, Ananthapadmanabha Bhagwath</creator><creator>Athmika, Nagaraj</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>2023</creationdate><title>Genomic potential for exopolysaccharide production and differential polysaccharide degradation in closely related Alteromonas sp. PRIM-21 and Alteromonas fortis 1T</title><author>Rekha, Punchappady Devasya ; Shastry, Rajesh P. ; Hameed, Asif ; Ghate, Sudeep D. ; Arun, Ananthapadmanabha Bhagwath ; Athmika, Nagaraj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-2d22251a975b1dd22a6a981e302f90d329dede2ff22f3d58235bfc6cb4cef02a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ABC transporter</topic><topic>Algae</topic><topic>Alginates</topic><topic>Alginic acid</topic><topic>Alteromonas</topic><topic>Arabinogalactan</topic><topic>Biomedical and Life Sciences</topic><topic>Biopolymers</topic><topic>Biosynthesis</topic><topic>Carbohydrates</topic><topic>Degradation</topic><topic>Depolymerization</topic><topic>Exopolysaccharides</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genomes</topic><topic>Heterogeneity</topic><topic>Life Sciences</topic><topic>Marine environment</topic><topic>Marine organisms</topic><topic>Medical Microbiology</topic><topic>Microbiology</topic><topic>Nucleotide sequence</topic><topic>Nutrients</topic><topic>Original Paper</topic><topic>Plant Sciences</topic><topic>Polysaccharides</topic><topic>rRNA 16S</topic><topic>Saccharides</topic><topic>Soil Science &amp; Conservation</topic><topic>tRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rekha, Punchappady Devasya</creatorcontrib><creatorcontrib>Shastry, Rajesh P.</creatorcontrib><creatorcontrib>Hameed, Asif</creatorcontrib><creatorcontrib>Ghate, Sudeep D.</creatorcontrib><creatorcontrib>Arun, Ananthapadmanabha Bhagwath</creatorcontrib><creatorcontrib>Athmika, Nagaraj</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Antonie van Leeuwenhoek</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rekha, Punchappady Devasya</au><au>Shastry, Rajesh P.</au><au>Hameed, Asif</au><au>Ghate, Sudeep D.</au><au>Arun, Ananthapadmanabha Bhagwath</au><au>Athmika, Nagaraj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genomic potential for exopolysaccharide production and differential polysaccharide degradation in closely related Alteromonas sp. PRIM-21 and Alteromonas fortis 1T</atitle><jtitle>Antonie van Leeuwenhoek</jtitle><stitle>Antonie van Leeuwenhoek</stitle><date>2023</date><risdate>2023</risdate><volume>116</volume><issue>1</issue><spage>39</spage><epage>51</epage><pages>39-51</pages><issn>0003-6072</issn><eissn>1572-9699</eissn><abstract>Members of the genus Alteromonas  are widely distributed in diverse marine environments and are often associated with marine organisms. Their ability to produce exopolysaccharides (EPS) and depolymerize sulfated algal polysaccharides has provided industrial importance to some species. Here, we describe the draft genome of an algae-associated strain namely, Alteromonas  sp. PRIM-21 isolated from the southwest coast of India to understand the EPS biosynthetic pathways as well as polysaccharide depolymerization system in comparison to the closely related strain  Alteromonas fortis  1 T that shares 99.8% 16S rRNA gene sequence similarity. Whole-genome shotgun sequencing of Alteromonas sp. PRIM-21 yielded 50 contigs with a total length of 4,638,422 bp having 43.86% GC content. The resultant genome shared 95.9% OrthoANI value with  A. fortis  1  T , and contained 4125 predicted protein-coding genes, 71 tRNA and 10 rRNA genes. Genes involved in Wzx/Wzy-, ABC transporter- and synthase-dependent pathways for EPS production and secretion were common in both Alteromonas sp. PRIM-21 and  A. fortis  1 T . However, the distribution of carbohydrate-active enzymes (CAZymes) was heterogeneous. The strain PRIM-21 harbored polysaccharide lyases for the degradation of alginate, ulvan, arabinogalactan and chondroitin. This was further validated from the culture-based assays using seven different polysaccharides. The depolymerizing ability of the bacteria may be useful in deriving nutrients from the biopolymers produced in the algal host while the EPS biosynthesis may provide additional advantages for life in the stressful marine environment. The results also highlight the genetic heterogeneity in terms of polysaccharide utilization among the closely related  Alteromonas  strains.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10482-022-01796-8</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6072
ispartof Antonie van Leeuwenhoek, 2023, Vol.116 (1), p.39-51
issn 0003-6072
1572-9699
language eng
recordid cdi_proquest_miscellaneous_2738195736
source Springer Nature - Complete Springer Journals
subjects ABC transporter
Algae
Alginates
Alginic acid
Alteromonas
Arabinogalactan
Biomedical and Life Sciences
Biopolymers
Biosynthesis
Carbohydrates
Degradation
Depolymerization
Exopolysaccharides
Gene sequencing
Genes
Genomes
Heterogeneity
Life Sciences
Marine environment
Marine organisms
Medical Microbiology
Microbiology
Nucleotide sequence
Nutrients
Original Paper
Plant Sciences
Polysaccharides
rRNA 16S
Saccharides
Soil Science & Conservation
tRNA
title Genomic potential for exopolysaccharide production and differential polysaccharide degradation in closely related Alteromonas sp. PRIM-21 and Alteromonas fortis 1T
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A18%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genomic%20potential%20for%20exopolysaccharide%20production%20and%20differential%20polysaccharide%20degradation%20in%20closely%20related%20Alteromonas%20sp.%20PRIM-21%20and%20Alteromonas%20fortis%201T&rft.jtitle=Antonie%20van%20Leeuwenhoek&rft.au=Rekha,%20Punchappady%20Devasya&rft.date=2023&rft.volume=116&rft.issue=1&rft.spage=39&rft.epage=51&rft.pages=39-51&rft.issn=0003-6072&rft.eissn=1572-9699&rft_id=info:doi/10.1007/s10482-022-01796-8&rft_dat=%3Cproquest_cross%3E2738195736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761428972&rft_id=info:pmid/&rfr_iscdi=true