Decorating Single‐Atomic Mn Sites with FeMn Clusters to Boost Oxygen Reduction Reaction
The regulation of electron distribution of single‐atomic metal sites by atomic clusters is an effective strategy to boost their intrinsic activity of oxygen reduction reaction (ORR). Herein we report the construction of single‐atomic Mn sites decorated with atomic clusters by an innovative combinati...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2023-01, Vol.62 (3), p.e202214988-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | e202214988 |
container_title | Angewandte Chemie International Edition |
container_volume | 62 |
creator | Liu, Heng Jiang, Luozhen Khan, Javid Wang, Xinxin Xiao, Jiamin Zhang, Handong Xie, Haijiao Li, Lina Wang, Shuangyin Han, Lei |
description | The regulation of electron distribution of single‐atomic metal sites by atomic clusters is an effective strategy to boost their intrinsic activity of oxygen reduction reaction (ORR). Herein we report the construction of single‐atomic Mn sites decorated with atomic clusters by an innovative combination of post‐adsorption and secondary pyrolysis. The X‐ray absorption spectroscopy confirms the formation of Mn sites via Mn‐N4 coordination bonding to FeMn atomic clusters (FeMnac/Mn‐N4C), which has been demonstrated theoretically to be conducive to the adsorption of molecular O2 and the break of O−O bond during the ORR process. Benefiting from the structural features above, the FeMnac/Mn‐N4C catalyst exhibits excellent ORR activity with half‐wave potential of 0.79 V in 0.5 M H2SO4 and 0.90 V in 0.1 M KOH as well as preeminent Zn‐air battery performance. Such synthetic strategy may open up a route to construct highly active catalysts with tunable atomic structures for diverse applications.
Coexisting single‐atomic Mn and FeMn atomic clusters sites have been fabricated by the innovative combination of post‐adsorption and secondary pyrolysis approach. This material has been demonstrated theoretically to be conducive to the adsorption of molecular O2 and the cleavage of O−O bond during the oxygen reduction reaction (ORR) process, thus improving the intrinsic ORR activity and selectivity. |
doi_str_mv | 10.1002/anie.202214988 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2738192699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2761988757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3738-e1a127ee0306c439fd038e3b7fb0f65d51379965c66dcac5d832db8a1a327ab23</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EotxWRhSJhSXFl8R2xlJaQAIqcRmYIsc5KanSuMSOSjcegWfkSXApFImFxf5tff6P9SF0SHCXYExPVV1Cl2JKSZRIuYF2SExJyIRgmz5HjIVCxqSDdq2deF5KzLdRh_EIExFHO-jpHLRplCvrcXDvlwo-3t57zkxLHdzU_sqBDealew6G4M_9qrUOGhs4E5wZY10wel2MoQ7uIG-1K80yqa-wj7YKVVk4-N730ONw8NC_DK9HF1f93nWomWAyBKIIFQCYYa4jlhQ5ZhJYJooMFzzOY8JEkvBYc55rpeNcMppnUhHFqFAZZXvoZNU7a8xLC9al09JqqCpVg2ltSv0UklCeJB49_oNOTNvU_nee4sQLFLHwVHdF6cZY20CRzppyqppFSnC6lJ4upadr6f7B0Xdtm00hX-M_lj2QrIB5WcHin7q0d3s1-C3_BCZZjiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761988757</pqid></control><display><type>article</type><title>Decorating Single‐Atomic Mn Sites with FeMn Clusters to Boost Oxygen Reduction Reaction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Heng ; Jiang, Luozhen ; Khan, Javid ; Wang, Xinxin ; Xiao, Jiamin ; Zhang, Handong ; Xie, Haijiao ; Li, Lina ; Wang, Shuangyin ; Han, Lei</creator><creatorcontrib>Liu, Heng ; Jiang, Luozhen ; Khan, Javid ; Wang, Xinxin ; Xiao, Jiamin ; Zhang, Handong ; Xie, Haijiao ; Li, Lina ; Wang, Shuangyin ; Han, Lei</creatorcontrib><description>The regulation of electron distribution of single‐atomic metal sites by atomic clusters is an effective strategy to boost their intrinsic activity of oxygen reduction reaction (ORR). Herein we report the construction of single‐atomic Mn sites decorated with atomic clusters by an innovative combination of post‐adsorption and secondary pyrolysis. The X‐ray absorption spectroscopy confirms the formation of Mn sites via Mn‐N4 coordination bonding to FeMn atomic clusters (FeMnac/Mn‐N4C), which has been demonstrated theoretically to be conducive to the adsorption of molecular O2 and the break of O−O bond during the ORR process. Benefiting from the structural features above, the FeMnac/Mn‐N4C catalyst exhibits excellent ORR activity with half‐wave potential of 0.79 V in 0.5 M H2SO4 and 0.90 V in 0.1 M KOH as well as preeminent Zn‐air battery performance. Such synthetic strategy may open up a route to construct highly active catalysts with tunable atomic structures for diverse applications.
Coexisting single‐atomic Mn and FeMn atomic clusters sites have been fabricated by the innovative combination of post‐adsorption and secondary pyrolysis approach. This material has been demonstrated theoretically to be conducive to the adsorption of molecular O2 and the cleavage of O−O bond during the oxygen reduction reaction (ORR) process, thus improving the intrinsic ORR activity and selectivity.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202214988</identifier><identifier>PMID: 36401754</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Absorption spectroscopy ; Adsorption ; Atomic Clusters ; Catalysts ; Chemical bonds ; Chemical reduction ; Electron Distribution ; Metal air batteries ; Mn Single Atoms ; Oxygen ; Oxygen Reduction Reaction ; Oxygen reduction reactions ; Pyrolysis ; Sulfuric acid ; Zinc-oxygen batteries</subject><ispartof>Angewandte Chemie International Edition, 2023-01, Vol.62 (3), p.e202214988-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3738-e1a127ee0306c439fd038e3b7fb0f65d51379965c66dcac5d832db8a1a327ab23</citedby><cites>FETCH-LOGICAL-c3738-e1a127ee0306c439fd038e3b7fb0f65d51379965c66dcac5d832db8a1a327ab23</cites><orcidid>0000-0003-0186-2772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202214988$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202214988$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36401754$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Heng</creatorcontrib><creatorcontrib>Jiang, Luozhen</creatorcontrib><creatorcontrib>Khan, Javid</creatorcontrib><creatorcontrib>Wang, Xinxin</creatorcontrib><creatorcontrib>Xiao, Jiamin</creatorcontrib><creatorcontrib>Zhang, Handong</creatorcontrib><creatorcontrib>Xie, Haijiao</creatorcontrib><creatorcontrib>Li, Lina</creatorcontrib><creatorcontrib>Wang, Shuangyin</creatorcontrib><creatorcontrib>Han, Lei</creatorcontrib><title>Decorating Single‐Atomic Mn Sites with FeMn Clusters to Boost Oxygen Reduction Reaction</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The regulation of electron distribution of single‐atomic metal sites by atomic clusters is an effective strategy to boost their intrinsic activity of oxygen reduction reaction (ORR). Herein we report the construction of single‐atomic Mn sites decorated with atomic clusters by an innovative combination of post‐adsorption and secondary pyrolysis. The X‐ray absorption spectroscopy confirms the formation of Mn sites via Mn‐N4 coordination bonding to FeMn atomic clusters (FeMnac/Mn‐N4C), which has been demonstrated theoretically to be conducive to the adsorption of molecular O2 and the break of O−O bond during the ORR process. Benefiting from the structural features above, the FeMnac/Mn‐N4C catalyst exhibits excellent ORR activity with half‐wave potential of 0.79 V in 0.5 M H2SO4 and 0.90 V in 0.1 M KOH as well as preeminent Zn‐air battery performance. Such synthetic strategy may open up a route to construct highly active catalysts with tunable atomic structures for diverse applications.
Coexisting single‐atomic Mn and FeMn atomic clusters sites have been fabricated by the innovative combination of post‐adsorption and secondary pyrolysis approach. This material has been demonstrated theoretically to be conducive to the adsorption of molecular O2 and the cleavage of O−O bond during the oxygen reduction reaction (ORR) process, thus improving the intrinsic ORR activity and selectivity.</description><subject>Absorption spectroscopy</subject><subject>Adsorption</subject><subject>Atomic Clusters</subject><subject>Catalysts</subject><subject>Chemical bonds</subject><subject>Chemical reduction</subject><subject>Electron Distribution</subject><subject>Metal air batteries</subject><subject>Mn Single Atoms</subject><subject>Oxygen</subject><subject>Oxygen Reduction Reaction</subject><subject>Oxygen reduction reactions</subject><subject>Pyrolysis</subject><subject>Sulfuric acid</subject><subject>Zinc-oxygen batteries</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EotxWRhSJhSXFl8R2xlJaQAIqcRmYIsc5KanSuMSOSjcegWfkSXApFImFxf5tff6P9SF0SHCXYExPVV1Cl2JKSZRIuYF2SExJyIRgmz5HjIVCxqSDdq2deF5KzLdRh_EIExFHO-jpHLRplCvrcXDvlwo-3t57zkxLHdzU_sqBDealew6G4M_9qrUOGhs4E5wZY10wel2MoQ7uIG-1K80yqa-wj7YKVVk4-N730ONw8NC_DK9HF1f93nWomWAyBKIIFQCYYa4jlhQ5ZhJYJooMFzzOY8JEkvBYc55rpeNcMppnUhHFqFAZZXvoZNU7a8xLC9al09JqqCpVg2ltSv0UklCeJB49_oNOTNvU_nee4sQLFLHwVHdF6cZY20CRzppyqppFSnC6lJ4upadr6f7B0Xdtm00hX-M_lj2QrIB5WcHin7q0d3s1-C3_BCZZjiA</recordid><startdate>20230116</startdate><enddate>20230116</enddate><creator>Liu, Heng</creator><creator>Jiang, Luozhen</creator><creator>Khan, Javid</creator><creator>Wang, Xinxin</creator><creator>Xiao, Jiamin</creator><creator>Zhang, Handong</creator><creator>Xie, Haijiao</creator><creator>Li, Lina</creator><creator>Wang, Shuangyin</creator><creator>Han, Lei</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0186-2772</orcidid></search><sort><creationdate>20230116</creationdate><title>Decorating Single‐Atomic Mn Sites with FeMn Clusters to Boost Oxygen Reduction Reaction</title><author>Liu, Heng ; Jiang, Luozhen ; Khan, Javid ; Wang, Xinxin ; Xiao, Jiamin ; Zhang, Handong ; Xie, Haijiao ; Li, Lina ; Wang, Shuangyin ; Han, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3738-e1a127ee0306c439fd038e3b7fb0f65d51379965c66dcac5d832db8a1a327ab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption spectroscopy</topic><topic>Adsorption</topic><topic>Atomic Clusters</topic><topic>Catalysts</topic><topic>Chemical bonds</topic><topic>Chemical reduction</topic><topic>Electron Distribution</topic><topic>Metal air batteries</topic><topic>Mn Single Atoms</topic><topic>Oxygen</topic><topic>Oxygen Reduction Reaction</topic><topic>Oxygen reduction reactions</topic><topic>Pyrolysis</topic><topic>Sulfuric acid</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Heng</creatorcontrib><creatorcontrib>Jiang, Luozhen</creatorcontrib><creatorcontrib>Khan, Javid</creatorcontrib><creatorcontrib>Wang, Xinxin</creatorcontrib><creatorcontrib>Xiao, Jiamin</creatorcontrib><creatorcontrib>Zhang, Handong</creatorcontrib><creatorcontrib>Xie, Haijiao</creatorcontrib><creatorcontrib>Li, Lina</creatorcontrib><creatorcontrib>Wang, Shuangyin</creatorcontrib><creatorcontrib>Han, Lei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Heng</au><au>Jiang, Luozhen</au><au>Khan, Javid</au><au>Wang, Xinxin</au><au>Xiao, Jiamin</au><au>Zhang, Handong</au><au>Xie, Haijiao</au><au>Li, Lina</au><au>Wang, Shuangyin</au><au>Han, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decorating Single‐Atomic Mn Sites with FeMn Clusters to Boost Oxygen Reduction Reaction</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2023-01-16</date><risdate>2023</risdate><volume>62</volume><issue>3</issue><spage>e202214988</spage><epage>n/a</epage><pages>e202214988-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The regulation of electron distribution of single‐atomic metal sites by atomic clusters is an effective strategy to boost their intrinsic activity of oxygen reduction reaction (ORR). Herein we report the construction of single‐atomic Mn sites decorated with atomic clusters by an innovative combination of post‐adsorption and secondary pyrolysis. The X‐ray absorption spectroscopy confirms the formation of Mn sites via Mn‐N4 coordination bonding to FeMn atomic clusters (FeMnac/Mn‐N4C), which has been demonstrated theoretically to be conducive to the adsorption of molecular O2 and the break of O−O bond during the ORR process. Benefiting from the structural features above, the FeMnac/Mn‐N4C catalyst exhibits excellent ORR activity with half‐wave potential of 0.79 V in 0.5 M H2SO4 and 0.90 V in 0.1 M KOH as well as preeminent Zn‐air battery performance. Such synthetic strategy may open up a route to construct highly active catalysts with tunable atomic structures for diverse applications.
Coexisting single‐atomic Mn and FeMn atomic clusters sites have been fabricated by the innovative combination of post‐adsorption and secondary pyrolysis approach. This material has been demonstrated theoretically to be conducive to the adsorption of molecular O2 and the cleavage of O−O bond during the oxygen reduction reaction (ORR) process, thus improving the intrinsic ORR activity and selectivity.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36401754</pmid><doi>10.1002/anie.202214988</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-0186-2772</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2023-01, Vol.62 (3), p.e202214988-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2738192699 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Absorption spectroscopy Adsorption Atomic Clusters Catalysts Chemical bonds Chemical reduction Electron Distribution Metal air batteries Mn Single Atoms Oxygen Oxygen Reduction Reaction Oxygen reduction reactions Pyrolysis Sulfuric acid Zinc-oxygen batteries |
title | Decorating Single‐Atomic Mn Sites with FeMn Clusters to Boost Oxygen Reduction Reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T13%3A39%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decorating%20Single%E2%80%90Atomic%20Mn%20Sites%20with%20FeMn%20Clusters%20to%20Boost%20Oxygen%20Reduction%20Reaction&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Liu,%20Heng&rft.date=2023-01-16&rft.volume=62&rft.issue=3&rft.spage=e202214988&rft.epage=n/a&rft.pages=e202214988-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202214988&rft_dat=%3Cproquest_cross%3E2761988757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761988757&rft_id=info:pmid/36401754&rfr_iscdi=true |