Decorating Single‐Atomic Mn Sites with FeMn Clusters to Boost Oxygen Reduction Reaction

The regulation of electron distribution of single‐atomic metal sites by atomic clusters is an effective strategy to boost their intrinsic activity of oxygen reduction reaction (ORR). Herein we report the construction of single‐atomic Mn sites decorated with atomic clusters by an innovative combinati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2023-01, Vol.62 (3), p.e202214988-n/a
Hauptverfasser: Liu, Heng, Jiang, Luozhen, Khan, Javid, Wang, Xinxin, Xiao, Jiamin, Zhang, Handong, Xie, Haijiao, Li, Lina, Wang, Shuangyin, Han, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page e202214988
container_title Angewandte Chemie International Edition
container_volume 62
creator Liu, Heng
Jiang, Luozhen
Khan, Javid
Wang, Xinxin
Xiao, Jiamin
Zhang, Handong
Xie, Haijiao
Li, Lina
Wang, Shuangyin
Han, Lei
description The regulation of electron distribution of single‐atomic metal sites by atomic clusters is an effective strategy to boost their intrinsic activity of oxygen reduction reaction (ORR). Herein we report the construction of single‐atomic Mn sites decorated with atomic clusters by an innovative combination of post‐adsorption and secondary pyrolysis. The X‐ray absorption spectroscopy confirms the formation of Mn sites via Mn‐N4 coordination bonding to FeMn atomic clusters (FeMnac/Mn‐N4C), which has been demonstrated theoretically to be conducive to the adsorption of molecular O2 and the break of O−O bond during the ORR process. Benefiting from the structural features above, the FeMnac/Mn‐N4C catalyst exhibits excellent ORR activity with half‐wave potential of 0.79 V in 0.5 M H2SO4 and 0.90 V in 0.1 M KOH as well as preeminent Zn‐air battery performance. Such synthetic strategy may open up a route to construct highly active catalysts with tunable atomic structures for diverse applications. Coexisting single‐atomic Mn and FeMn atomic clusters sites have been fabricated by the innovative combination of post‐adsorption and secondary pyrolysis approach. This material has been demonstrated theoretically to be conducive to the adsorption of molecular O2 and the cleavage of O−O bond during the oxygen reduction reaction (ORR) process, thus improving the intrinsic ORR activity and selectivity.
doi_str_mv 10.1002/anie.202214988
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2738192699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2761988757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3738-e1a127ee0306c439fd038e3b7fb0f65d51379965c66dcac5d832db8a1a327ab23</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EotxWRhSJhSXFl8R2xlJaQAIqcRmYIsc5KanSuMSOSjcegWfkSXApFImFxf5tff6P9SF0SHCXYExPVV1Cl2JKSZRIuYF2SExJyIRgmz5HjIVCxqSDdq2deF5KzLdRh_EIExFHO-jpHLRplCvrcXDvlwo-3t57zkxLHdzU_sqBDealew6G4M_9qrUOGhs4E5wZY10wel2MoQ7uIG-1K80yqa-wj7YKVVk4-N730ONw8NC_DK9HF1f93nWomWAyBKIIFQCYYa4jlhQ5ZhJYJooMFzzOY8JEkvBYc55rpeNcMppnUhHFqFAZZXvoZNU7a8xLC9al09JqqCpVg2ltSv0UklCeJB49_oNOTNvU_nee4sQLFLHwVHdF6cZY20CRzppyqppFSnC6lJ4upadr6f7B0Xdtm00hX-M_lj2QrIB5WcHin7q0d3s1-C3_BCZZjiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761988757</pqid></control><display><type>article</type><title>Decorating Single‐Atomic Mn Sites with FeMn Clusters to Boost Oxygen Reduction Reaction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Heng ; Jiang, Luozhen ; Khan, Javid ; Wang, Xinxin ; Xiao, Jiamin ; Zhang, Handong ; Xie, Haijiao ; Li, Lina ; Wang, Shuangyin ; Han, Lei</creator><creatorcontrib>Liu, Heng ; Jiang, Luozhen ; Khan, Javid ; Wang, Xinxin ; Xiao, Jiamin ; Zhang, Handong ; Xie, Haijiao ; Li, Lina ; Wang, Shuangyin ; Han, Lei</creatorcontrib><description>The regulation of electron distribution of single‐atomic metal sites by atomic clusters is an effective strategy to boost their intrinsic activity of oxygen reduction reaction (ORR). Herein we report the construction of single‐atomic Mn sites decorated with atomic clusters by an innovative combination of post‐adsorption and secondary pyrolysis. The X‐ray absorption spectroscopy confirms the formation of Mn sites via Mn‐N4 coordination bonding to FeMn atomic clusters (FeMnac/Mn‐N4C), which has been demonstrated theoretically to be conducive to the adsorption of molecular O2 and the break of O−O bond during the ORR process. Benefiting from the structural features above, the FeMnac/Mn‐N4C catalyst exhibits excellent ORR activity with half‐wave potential of 0.79 V in 0.5 M H2SO4 and 0.90 V in 0.1 M KOH as well as preeminent Zn‐air battery performance. Such synthetic strategy may open up a route to construct highly active catalysts with tunable atomic structures for diverse applications. Coexisting single‐atomic Mn and FeMn atomic clusters sites have been fabricated by the innovative combination of post‐adsorption and secondary pyrolysis approach. This material has been demonstrated theoretically to be conducive to the adsorption of molecular O2 and the cleavage of O−O bond during the oxygen reduction reaction (ORR) process, thus improving the intrinsic ORR activity and selectivity.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202214988</identifier><identifier>PMID: 36401754</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Absorption spectroscopy ; Adsorption ; Atomic Clusters ; Catalysts ; Chemical bonds ; Chemical reduction ; Electron Distribution ; Metal air batteries ; Mn Single Atoms ; Oxygen ; Oxygen Reduction Reaction ; Oxygen reduction reactions ; Pyrolysis ; Sulfuric acid ; Zinc-oxygen batteries</subject><ispartof>Angewandte Chemie International Edition, 2023-01, Vol.62 (3), p.e202214988-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3738-e1a127ee0306c439fd038e3b7fb0f65d51379965c66dcac5d832db8a1a327ab23</citedby><cites>FETCH-LOGICAL-c3738-e1a127ee0306c439fd038e3b7fb0f65d51379965c66dcac5d832db8a1a327ab23</cites><orcidid>0000-0003-0186-2772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202214988$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202214988$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36401754$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Heng</creatorcontrib><creatorcontrib>Jiang, Luozhen</creatorcontrib><creatorcontrib>Khan, Javid</creatorcontrib><creatorcontrib>Wang, Xinxin</creatorcontrib><creatorcontrib>Xiao, Jiamin</creatorcontrib><creatorcontrib>Zhang, Handong</creatorcontrib><creatorcontrib>Xie, Haijiao</creatorcontrib><creatorcontrib>Li, Lina</creatorcontrib><creatorcontrib>Wang, Shuangyin</creatorcontrib><creatorcontrib>Han, Lei</creatorcontrib><title>Decorating Single‐Atomic Mn Sites with FeMn Clusters to Boost Oxygen Reduction Reaction</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The regulation of electron distribution of single‐atomic metal sites by atomic clusters is an effective strategy to boost their intrinsic activity of oxygen reduction reaction (ORR). Herein we report the construction of single‐atomic Mn sites decorated with atomic clusters by an innovative combination of post‐adsorption and secondary pyrolysis. The X‐ray absorption spectroscopy confirms the formation of Mn sites via Mn‐N4 coordination bonding to FeMn atomic clusters (FeMnac/Mn‐N4C), which has been demonstrated theoretically to be conducive to the adsorption of molecular O2 and the break of O−O bond during the ORR process. Benefiting from the structural features above, the FeMnac/Mn‐N4C catalyst exhibits excellent ORR activity with half‐wave potential of 0.79 V in 0.5 M H2SO4 and 0.90 V in 0.1 M KOH as well as preeminent Zn‐air battery performance. Such synthetic strategy may open up a route to construct highly active catalysts with tunable atomic structures for diverse applications. Coexisting single‐atomic Mn and FeMn atomic clusters sites have been fabricated by the innovative combination of post‐adsorption and secondary pyrolysis approach. This material has been demonstrated theoretically to be conducive to the adsorption of molecular O2 and the cleavage of O−O bond during the oxygen reduction reaction (ORR) process, thus improving the intrinsic ORR activity and selectivity.</description><subject>Absorption spectroscopy</subject><subject>Adsorption</subject><subject>Atomic Clusters</subject><subject>Catalysts</subject><subject>Chemical bonds</subject><subject>Chemical reduction</subject><subject>Electron Distribution</subject><subject>Metal air batteries</subject><subject>Mn Single Atoms</subject><subject>Oxygen</subject><subject>Oxygen Reduction Reaction</subject><subject>Oxygen reduction reactions</subject><subject>Pyrolysis</subject><subject>Sulfuric acid</subject><subject>Zinc-oxygen batteries</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EotxWRhSJhSXFl8R2xlJaQAIqcRmYIsc5KanSuMSOSjcegWfkSXApFImFxf5tff6P9SF0SHCXYExPVV1Cl2JKSZRIuYF2SExJyIRgmz5HjIVCxqSDdq2deF5KzLdRh_EIExFHO-jpHLRplCvrcXDvlwo-3t57zkxLHdzU_sqBDealew6G4M_9qrUOGhs4E5wZY10wel2MoQ7uIG-1K80yqa-wj7YKVVk4-N730ONw8NC_DK9HF1f93nWomWAyBKIIFQCYYa4jlhQ5ZhJYJooMFzzOY8JEkvBYc55rpeNcMppnUhHFqFAZZXvoZNU7a8xLC9al09JqqCpVg2ltSv0UklCeJB49_oNOTNvU_nee4sQLFLHwVHdF6cZY20CRzppyqppFSnC6lJ4upadr6f7B0Xdtm00hX-M_lj2QrIB5WcHin7q0d3s1-C3_BCZZjiA</recordid><startdate>20230116</startdate><enddate>20230116</enddate><creator>Liu, Heng</creator><creator>Jiang, Luozhen</creator><creator>Khan, Javid</creator><creator>Wang, Xinxin</creator><creator>Xiao, Jiamin</creator><creator>Zhang, Handong</creator><creator>Xie, Haijiao</creator><creator>Li, Lina</creator><creator>Wang, Shuangyin</creator><creator>Han, Lei</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0186-2772</orcidid></search><sort><creationdate>20230116</creationdate><title>Decorating Single‐Atomic Mn Sites with FeMn Clusters to Boost Oxygen Reduction Reaction</title><author>Liu, Heng ; Jiang, Luozhen ; Khan, Javid ; Wang, Xinxin ; Xiao, Jiamin ; Zhang, Handong ; Xie, Haijiao ; Li, Lina ; Wang, Shuangyin ; Han, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3738-e1a127ee0306c439fd038e3b7fb0f65d51379965c66dcac5d832db8a1a327ab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption spectroscopy</topic><topic>Adsorption</topic><topic>Atomic Clusters</topic><topic>Catalysts</topic><topic>Chemical bonds</topic><topic>Chemical reduction</topic><topic>Electron Distribution</topic><topic>Metal air batteries</topic><topic>Mn Single Atoms</topic><topic>Oxygen</topic><topic>Oxygen Reduction Reaction</topic><topic>Oxygen reduction reactions</topic><topic>Pyrolysis</topic><topic>Sulfuric acid</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Heng</creatorcontrib><creatorcontrib>Jiang, Luozhen</creatorcontrib><creatorcontrib>Khan, Javid</creatorcontrib><creatorcontrib>Wang, Xinxin</creatorcontrib><creatorcontrib>Xiao, Jiamin</creatorcontrib><creatorcontrib>Zhang, Handong</creatorcontrib><creatorcontrib>Xie, Haijiao</creatorcontrib><creatorcontrib>Li, Lina</creatorcontrib><creatorcontrib>Wang, Shuangyin</creatorcontrib><creatorcontrib>Han, Lei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Heng</au><au>Jiang, Luozhen</au><au>Khan, Javid</au><au>Wang, Xinxin</au><au>Xiao, Jiamin</au><au>Zhang, Handong</au><au>Xie, Haijiao</au><au>Li, Lina</au><au>Wang, Shuangyin</au><au>Han, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decorating Single‐Atomic Mn Sites with FeMn Clusters to Boost Oxygen Reduction Reaction</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2023-01-16</date><risdate>2023</risdate><volume>62</volume><issue>3</issue><spage>e202214988</spage><epage>n/a</epage><pages>e202214988-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The regulation of electron distribution of single‐atomic metal sites by atomic clusters is an effective strategy to boost their intrinsic activity of oxygen reduction reaction (ORR). Herein we report the construction of single‐atomic Mn sites decorated with atomic clusters by an innovative combination of post‐adsorption and secondary pyrolysis. The X‐ray absorption spectroscopy confirms the formation of Mn sites via Mn‐N4 coordination bonding to FeMn atomic clusters (FeMnac/Mn‐N4C), which has been demonstrated theoretically to be conducive to the adsorption of molecular O2 and the break of O−O bond during the ORR process. Benefiting from the structural features above, the FeMnac/Mn‐N4C catalyst exhibits excellent ORR activity with half‐wave potential of 0.79 V in 0.5 M H2SO4 and 0.90 V in 0.1 M KOH as well as preeminent Zn‐air battery performance. Such synthetic strategy may open up a route to construct highly active catalysts with tunable atomic structures for diverse applications. Coexisting single‐atomic Mn and FeMn atomic clusters sites have been fabricated by the innovative combination of post‐adsorption and secondary pyrolysis approach. This material has been demonstrated theoretically to be conducive to the adsorption of molecular O2 and the cleavage of O−O bond during the oxygen reduction reaction (ORR) process, thus improving the intrinsic ORR activity and selectivity.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36401754</pmid><doi>10.1002/anie.202214988</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-0186-2772</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2023-01, Vol.62 (3), p.e202214988-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2738192699
source Wiley Online Library Journals Frontfile Complete
subjects Absorption spectroscopy
Adsorption
Atomic Clusters
Catalysts
Chemical bonds
Chemical reduction
Electron Distribution
Metal air batteries
Mn Single Atoms
Oxygen
Oxygen Reduction Reaction
Oxygen reduction reactions
Pyrolysis
Sulfuric acid
Zinc-oxygen batteries
title Decorating Single‐Atomic Mn Sites with FeMn Clusters to Boost Oxygen Reduction Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T13%3A39%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decorating%20Single%E2%80%90Atomic%20Mn%20Sites%20with%20FeMn%20Clusters%20to%20Boost%20Oxygen%20Reduction%20Reaction&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Liu,%20Heng&rft.date=2023-01-16&rft.volume=62&rft.issue=3&rft.spage=e202214988&rft.epage=n/a&rft.pages=e202214988-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202214988&rft_dat=%3Cproquest_cross%3E2761988757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2761988757&rft_id=info:pmid/36401754&rfr_iscdi=true