FRP composites based on different types of glass fibers and matrix resins: A comparative study

Flexural properties, impact energy, heat deflection temperature, and resistance to thermal and hydrothermal degradation of composites based on E‐glass and N‐glass fibers as the reinforcing agents, and epoxy, unsaturated polyester, phenolic, and epoxy‐phenolic resin systems as the matrix materials we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 1995-12, Vol.58 (12), p.2177-2184
Hauptverfasser: Ghosh, Premamoy, Bose, Nripati Ranjan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2184
container_issue 12
container_start_page 2177
container_title Journal of applied polymer science
container_volume 58
creator Ghosh, Premamoy
Bose, Nripati Ranjan
description Flexural properties, impact energy, heat deflection temperature, and resistance to thermal and hydrothermal degradation of composites based on E‐glass and N‐glass fibers as the reinforcing agents, and epoxy, unsaturated polyester, phenolic, and epoxy‐phenolic resin systems as the matrix materials were studied and compared. As a reinforcing agent E‐glass fiber is superior to N‐glass fiber, particularly with respect to development of flexural strength and modulus, impact strength, and thermal resistance; N‐glass fiber, however, imparts to the composites substantially higher resistance to hydrothermal degradation under boiling conditions in different chemical environments. For use of both E‐glass and N‐glass fibers as reinforcing agents, the general order of resistance to hydrothermal degradation for the composites based on different matrix resins is epoxy > phenolic > unsaturated polyester resin. Incorporation of a low dose of a rubbery polymer, such as styrene butadiene rubber (0.1–0.2%) and liquid polybutadiene (0.5–0.75%), in unsaturated polyester resin as the matrix resin measurably enhances impact energy of the composite. © 1995 John Wiley & Sons, Inc.
doi_str_mv 10.1002/app.1995.070581204
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27381510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27381510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3964-17860f4d520c8f7d55937743d450c1b4b850ac12cf4f5e0e89f39f806b33cd7e3</originalsourceid><addsrcrecordid>eNqNkM1O3DAURi1UJKbQF-jKi6q7DNd2HNtVN6NRgUq0DKg_OyzHsSu3mST4Zijz9g0MGnXJyot7zrH0EfKWwZwB8FM3DHNmjJyDAqkZh_KAzBgYVZQV16_IbIJYoSfiiLxG_A3AmIRqRm7PblbU9-uhxzQGpLXD0NC-o02KMeTQjXTcDtOhj_RX6xBpTHXISF3X0LUbc3qgOWDq8ANdPIVcdmO6DxTHTbM9IYfRtRjePL_H5PvZp2_Li-Ly6vzzcnFZeGGqsmBKVxDLRnLwOqpGSiOUKkVTSvCsLmstwXnGfSyjDBC0icJEDVUthG9UEMfk_a475P5uE3C064Q-tK3rQr9By5XQTDKYQL4Dfe4Rc4h2yGnt8tYysI9T2mlK-zil3U85Se-e6w69a2N2nU-4N7nhUIGasI877G9qw_YFYbtYrf7_pdjpCcfwsNdd_mMrJZS0P7-eW_nF6OWPm2sL4h-3wpS2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27381510</pqid></control><display><type>article</type><title>FRP composites based on different types of glass fibers and matrix resins: A comparative study</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ghosh, Premamoy ; Bose, Nripati Ranjan</creator><creatorcontrib>Ghosh, Premamoy ; Bose, Nripati Ranjan</creatorcontrib><description>Flexural properties, impact energy, heat deflection temperature, and resistance to thermal and hydrothermal degradation of composites based on E‐glass and N‐glass fibers as the reinforcing agents, and epoxy, unsaturated polyester, phenolic, and epoxy‐phenolic resin systems as the matrix materials were studied and compared. As a reinforcing agent E‐glass fiber is superior to N‐glass fiber, particularly with respect to development of flexural strength and modulus, impact strength, and thermal resistance; N‐glass fiber, however, imparts to the composites substantially higher resistance to hydrothermal degradation under boiling conditions in different chemical environments. For use of both E‐glass and N‐glass fibers as reinforcing agents, the general order of resistance to hydrothermal degradation for the composites based on different matrix resins is epoxy &gt; phenolic &gt; unsaturated polyester resin. Incorporation of a low dose of a rubbery polymer, such as styrene butadiene rubber (0.1–0.2%) and liquid polybutadiene (0.5–0.75%), in unsaturated polyester resin as the matrix resin measurably enhances impact energy of the composite. © 1995 John Wiley &amp; Sons, Inc.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.1995.070581204</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Composites ; Exact sciences and technology ; Forms of application and semi-finished materials ; Polymer industry, paints, wood ; Technology of polymers</subject><ispartof>Journal of applied polymer science, 1995-12, Vol.58 (12), p.2177-2184</ispartof><rights>Copyright © 1995 John Wiley &amp; Sons, Inc.</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3964-17860f4d520c8f7d55937743d450c1b4b850ac12cf4f5e0e89f39f806b33cd7e3</citedby><cites>FETCH-LOGICAL-c3964-17860f4d520c8f7d55937743d450c1b4b850ac12cf4f5e0e89f39f806b33cd7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.1995.070581204$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.1995.070581204$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2920607$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghosh, Premamoy</creatorcontrib><creatorcontrib>Bose, Nripati Ranjan</creatorcontrib><title>FRP composites based on different types of glass fibers and matrix resins: A comparative study</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>Flexural properties, impact energy, heat deflection temperature, and resistance to thermal and hydrothermal degradation of composites based on E‐glass and N‐glass fibers as the reinforcing agents, and epoxy, unsaturated polyester, phenolic, and epoxy‐phenolic resin systems as the matrix materials were studied and compared. As a reinforcing agent E‐glass fiber is superior to N‐glass fiber, particularly with respect to development of flexural strength and modulus, impact strength, and thermal resistance; N‐glass fiber, however, imparts to the composites substantially higher resistance to hydrothermal degradation under boiling conditions in different chemical environments. For use of both E‐glass and N‐glass fibers as reinforcing agents, the general order of resistance to hydrothermal degradation for the composites based on different matrix resins is epoxy &gt; phenolic &gt; unsaturated polyester resin. Incorporation of a low dose of a rubbery polymer, such as styrene butadiene rubber (0.1–0.2%) and liquid polybutadiene (0.5–0.75%), in unsaturated polyester resin as the matrix resin measurably enhances impact energy of the composite. © 1995 John Wiley &amp; Sons, Inc.</description><subject>Applied sciences</subject><subject>Composites</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Polymer industry, paints, wood</subject><subject>Technology of polymers</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqNkM1O3DAURi1UJKbQF-jKi6q7DNd2HNtVN6NRgUq0DKg_OyzHsSu3mST4Zijz9g0MGnXJyot7zrH0EfKWwZwB8FM3DHNmjJyDAqkZh_KAzBgYVZQV16_IbIJYoSfiiLxG_A3AmIRqRm7PblbU9-uhxzQGpLXD0NC-o02KMeTQjXTcDtOhj_RX6xBpTHXISF3X0LUbc3qgOWDq8ANdPIVcdmO6DxTHTbM9IYfRtRjePL_H5PvZp2_Li-Ly6vzzcnFZeGGqsmBKVxDLRnLwOqpGSiOUKkVTSvCsLmstwXnGfSyjDBC0icJEDVUthG9UEMfk_a475P5uE3C064Q-tK3rQr9By5XQTDKYQL4Dfe4Rc4h2yGnt8tYysI9T2mlK-zil3U85Se-e6w69a2N2nU-4N7nhUIGasI877G9qw_YFYbtYrf7_pdjpCcfwsNdd_mMrJZS0P7-eW_nF6OWPm2sL4h-3wpS2</recordid><startdate>19951219</startdate><enddate>19951219</enddate><creator>Ghosh, Premamoy</creator><creator>Bose, Nripati Ranjan</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>19951219</creationdate><title>FRP composites based on different types of glass fibers and matrix resins: A comparative study</title><author>Ghosh, Premamoy ; Bose, Nripati Ranjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3964-17860f4d520c8f7d55937743d450c1b4b850ac12cf4f5e0e89f39f806b33cd7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>Composites</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Polymer industry, paints, wood</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Premamoy</creatorcontrib><creatorcontrib>Bose, Nripati Ranjan</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Premamoy</au><au>Bose, Nripati Ranjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FRP composites based on different types of glass fibers and matrix resins: A comparative study</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>1995-12-19</date><risdate>1995</risdate><volume>58</volume><issue>12</issue><spage>2177</spage><epage>2184</epage><pages>2177-2184</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>Flexural properties, impact energy, heat deflection temperature, and resistance to thermal and hydrothermal degradation of composites based on E‐glass and N‐glass fibers as the reinforcing agents, and epoxy, unsaturated polyester, phenolic, and epoxy‐phenolic resin systems as the matrix materials were studied and compared. As a reinforcing agent E‐glass fiber is superior to N‐glass fiber, particularly with respect to development of flexural strength and modulus, impact strength, and thermal resistance; N‐glass fiber, however, imparts to the composites substantially higher resistance to hydrothermal degradation under boiling conditions in different chemical environments. For use of both E‐glass and N‐glass fibers as reinforcing agents, the general order of resistance to hydrothermal degradation for the composites based on different matrix resins is epoxy &gt; phenolic &gt; unsaturated polyester resin. Incorporation of a low dose of a rubbery polymer, such as styrene butadiene rubber (0.1–0.2%) and liquid polybutadiene (0.5–0.75%), in unsaturated polyester resin as the matrix resin measurably enhances impact energy of the composite. © 1995 John Wiley &amp; Sons, Inc.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.1995.070581204</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 1995-12, Vol.58 (12), p.2177-2184
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_miscellaneous_27381510
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Composites
Exact sciences and technology
Forms of application and semi-finished materials
Polymer industry, paints, wood
Technology of polymers
title FRP composites based on different types of glass fibers and matrix resins: A comparative study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A31%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FRP%20composites%20based%20on%20different%20types%20of%20glass%20fibers%20and%20matrix%20resins:%20A%20comparative%20study&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Ghosh,%20Premamoy&rft.date=1995-12-19&rft.volume=58&rft.issue=12&rft.spage=2177&rft.epage=2184&rft.pages=2177-2184&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.1995.070581204&rft_dat=%3Cproquest_cross%3E27381510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27381510&rft_id=info:pmid/&rfr_iscdi=true