Fecal microbiota transplantation enhances cell therapy in a rat model of hypoganglionosis by SCFA‐induced MEK1/2 signaling pathway

Hirschsprung disease (HSCR), one of several neurocristopathies in children, is characterized by nerve loss in the large intestine and is mainly treated by surgery, which causes severe complications. Enteric neural crest‐derived cell (ENCC) transplantation is a potential therapeutic strategy; however...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2023-01, Vol.42 (1), p.e111139-n/a
Hauptverfasser: Tian, Donghao, Xu, Wenyao, Pan, Weikang, Zheng, Baijun, Yang, Weili, Jia, Wanying, Liu, Yong, Garstka, Malgorzata A, Gao, Ya, Yu, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e111139
container_title The EMBO journal
container_volume 42
creator Tian, Donghao
Xu, Wenyao
Pan, Weikang
Zheng, Baijun
Yang, Weili
Jia, Wanying
Liu, Yong
Garstka, Malgorzata A
Gao, Ya
Yu, Hui
description Hirschsprung disease (HSCR), one of several neurocristopathies in children, is characterized by nerve loss in the large intestine and is mainly treated by surgery, which causes severe complications. Enteric neural crest‐derived cell (ENCC) transplantation is a potential therapeutic strategy; however, so far with poor efficacy. Here, we assessed whether and how fecal microbiota transplantation (FMT) could improve ENCC transplantation in a rat model of hypoganglionosis; a condition similar to HSCR, with less intestinal innervation. We found that the hypoganglionosis intestinal microenvironment negatively influenced the ENCC functional phenotype in vitro and in vivo . Combining 16S rDNA sequencing and targeted mass spectrometry revealed microbial dysbiosis and reduced short‐chain fatty acid (SCFA) production in the hypoganglionic gut. FMT increased the abundance of Bacteroides and Clostridium , SCFA production, and improved outcomes following ENCC transplantation. SCFAs alone stimulated ENCC proliferation, migration, and supported ENCC transplantation. Transcriptome‐wide mRNA sequencing identified MAPK signaling as the top differentially regulated pathway in response to SCFA exposure, and inhibition of MEK1/2 signaling abrogated the SCFA‐mediated effects on ENCC. This study demonstrates that FMT improves cell therapy for hypoganglionosis via short‐chain fatty acid metabolism‐induced MEK1/2 signaling. Synopsis Fecal microbiota transplantation synergy with enteric neural crest‐derived cell transplantation is tested in a rat model of hypoganglianosis to provide a non‐surgical treatment option of neurocristopathies including Hirschsprung disease. The intestinal microenvironment in a rat model of hypoganglionosis negatively influences enteric neural crest‐derived cell (ENCC) proliferation and migration Fecal microbiota transplantation (FMT) relieves hypoganglionosis symptoms and promotes ENCC transplantation in vitro and vivo. Some genera, particularly Bacteroides and Clostridium , increased after FMT, which coincided with short‐chain fatty acid (SCFA) production. SCFA exposure stimulated ENCC proliferation, migration, and supported ENCC transplantation in the treatment of hypoganglionosis via the MEK1/2 signaling pathway. Graphical Abstract Fecal microbiota transplantation enhances enteric neural crest‐derived cell transplantation in a rat model of hypoganglionosis supporting a non‐surgical treatment option of neurocristopathies including Hirschsprung disease.
doi_str_mv 10.15252/embj.2022111139
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_2737118187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760461580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4649-3d87521289dc3bd484847704f1606afa40acb766d7af857ae2026bc4d3872dc33</originalsourceid><addsrcrecordid>eNqFkTFv1DAcxS1ERY_CzoQssbCktR3H9kks7emOQlsxAHP0T-zkfErsYCeqsjHwAfiMfBJ8vUIFEsIevPze0_N7CL2g5JQWrGBnpq92p4wwRtPJl4_QgnJBMkZk8RgtCBM041Qtj9HTGHeEkEJJ-gQd5yJXTFK6QN82poYO97YOvrJ-BDwGcHHowI0wWu-wcVtwtYm4Nl2Hx60JMMzYOgw4wIh7r02HfYO38-BbcG2XRD7aiKsZf1xtzn98_W6dnmqj8c36ip4xHG3roLOuxQOM21uYn6GjBrpont-_J-jzZv1pdZldf3j7bnV-ndVc8GWWayULRpla6jqvNFfpSkl4QwUR0AAnUFdSCC2hUYUEk4oRVc11riRLkvwEvT74DsF_mUwcy97G_bfAGT_Fksk8laKokgl99Re681NIsfeUIFzQQpFEkQOV2osxmKYcgu0hzCUl5d1C5X6h8mGhJHl5bzxVvdG_Bb8mScCbA3BrOzP_17Bc31y8_8OfHuQxKV1rwkPwf2b6CRUKrnI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760461580</pqid></control><display><type>article</type><title>Fecal microbiota transplantation enhances cell therapy in a rat model of hypoganglionosis by SCFA‐induced MEK1/2 signaling pathway</title><source>Springer Nature OA Free Journals</source><creator>Tian, Donghao ; Xu, Wenyao ; Pan, Weikang ; Zheng, Baijun ; Yang, Weili ; Jia, Wanying ; Liu, Yong ; Garstka, Malgorzata A ; Gao, Ya ; Yu, Hui</creator><creatorcontrib>Tian, Donghao ; Xu, Wenyao ; Pan, Weikang ; Zheng, Baijun ; Yang, Weili ; Jia, Wanying ; Liu, Yong ; Garstka, Malgorzata A ; Gao, Ya ; Yu, Hui</creatorcontrib><description>Hirschsprung disease (HSCR), one of several neurocristopathies in children, is characterized by nerve loss in the large intestine and is mainly treated by surgery, which causes severe complications. Enteric neural crest‐derived cell (ENCC) transplantation is a potential therapeutic strategy; however, so far with poor efficacy. Here, we assessed whether and how fecal microbiota transplantation (FMT) could improve ENCC transplantation in a rat model of hypoganglionosis; a condition similar to HSCR, with less intestinal innervation. We found that the hypoganglionosis intestinal microenvironment negatively influenced the ENCC functional phenotype in vitro and in vivo . Combining 16S rDNA sequencing and targeted mass spectrometry revealed microbial dysbiosis and reduced short‐chain fatty acid (SCFA) production in the hypoganglionic gut. FMT increased the abundance of Bacteroides and Clostridium , SCFA production, and improved outcomes following ENCC transplantation. SCFAs alone stimulated ENCC proliferation, migration, and supported ENCC transplantation. Transcriptome‐wide mRNA sequencing identified MAPK signaling as the top differentially regulated pathway in response to SCFA exposure, and inhibition of MEK1/2 signaling abrogated the SCFA‐mediated effects on ENCC. This study demonstrates that FMT improves cell therapy for hypoganglionosis via short‐chain fatty acid metabolism‐induced MEK1/2 signaling. Synopsis Fecal microbiota transplantation synergy with enteric neural crest‐derived cell transplantation is tested in a rat model of hypoganglianosis to provide a non‐surgical treatment option of neurocristopathies including Hirschsprung disease. The intestinal microenvironment in a rat model of hypoganglionosis negatively influences enteric neural crest‐derived cell (ENCC) proliferation and migration Fecal microbiota transplantation (FMT) relieves hypoganglionosis symptoms and promotes ENCC transplantation in vitro and vivo. Some genera, particularly Bacteroides and Clostridium , increased after FMT, which coincided with short‐chain fatty acid (SCFA) production. SCFA exposure stimulated ENCC proliferation, migration, and supported ENCC transplantation in the treatment of hypoganglionosis via the MEK1/2 signaling pathway. Graphical Abstract Fecal microbiota transplantation enhances enteric neural crest‐derived cell transplantation in a rat model of hypoganglionosis supporting a non‐surgical treatment option of neurocristopathies including Hirschsprung disease.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2022111139</identifier><identifier>PMID: 36382711</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Bacteroides ; Cell therapy ; Cell- and Tissue-Based Therapy ; Clostridium ; Dysbacteriosis ; EMBO12 ; EMBO24 ; EMBO34 ; enteric neural crest‐derived cells ; Fatty acids ; Fatty Acids, Volatile - metabolism ; Fecal Microbiota Transplantation ; Fecal microflora ; fecal transplantation ; Feces ; Gene sequencing ; Hirschsprung disease ; Hirschsprung Disease - genetics ; Hirschsprung Disease - metabolism ; Hirschsprung Disease - therapy ; Hirschsprung's disease ; Innervation ; Intestine ; Kinases ; Large intestine ; Life Sciences ; MAP kinase ; Mass spectrometry ; Mass spectroscopy ; Microbiota ; Microenvironments ; Microorganisms ; Neural crest ; Phenotypes ; Rats ; rRNA 16S ; short‐chain fatty acids ; Signal Transduction ; Signaling ; Signs and symptoms ; Transcriptomes ; Transplantation</subject><ispartof>The EMBO journal, 2023-01, Vol.42 (1), p.e111139-n/a</ispartof><rights>The Author(s) 2022</rights><rights>2022 The Authors.</rights><rights>2023 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4649-3d87521289dc3bd484847704f1606afa40acb766d7af857ae2026bc4d3872dc33</citedby><cites>FETCH-LOGICAL-c4649-3d87521289dc3bd484847704f1606afa40acb766d7af857ae2026bc4d3872dc33</cites><orcidid>0000-0002-4617-7640 ; 0000-0003-2896-7275 ; 0000-0002-1886-6123 ; 0000-0002-6729-6374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.15252/embj.2022111139$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.15252/embj.2022111139$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,41120,42189,45574,45575,46409,46833,51576</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embj.2022111139$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36382711$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Donghao</creatorcontrib><creatorcontrib>Xu, Wenyao</creatorcontrib><creatorcontrib>Pan, Weikang</creatorcontrib><creatorcontrib>Zheng, Baijun</creatorcontrib><creatorcontrib>Yang, Weili</creatorcontrib><creatorcontrib>Jia, Wanying</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Garstka, Malgorzata A</creatorcontrib><creatorcontrib>Gao, Ya</creatorcontrib><creatorcontrib>Yu, Hui</creatorcontrib><title>Fecal microbiota transplantation enhances cell therapy in a rat model of hypoganglionosis by SCFA‐induced MEK1/2 signaling pathway</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Hirschsprung disease (HSCR), one of several neurocristopathies in children, is characterized by nerve loss in the large intestine and is mainly treated by surgery, which causes severe complications. Enteric neural crest‐derived cell (ENCC) transplantation is a potential therapeutic strategy; however, so far with poor efficacy. Here, we assessed whether and how fecal microbiota transplantation (FMT) could improve ENCC transplantation in a rat model of hypoganglionosis; a condition similar to HSCR, with less intestinal innervation. We found that the hypoganglionosis intestinal microenvironment negatively influenced the ENCC functional phenotype in vitro and in vivo . Combining 16S rDNA sequencing and targeted mass spectrometry revealed microbial dysbiosis and reduced short‐chain fatty acid (SCFA) production in the hypoganglionic gut. FMT increased the abundance of Bacteroides and Clostridium , SCFA production, and improved outcomes following ENCC transplantation. SCFAs alone stimulated ENCC proliferation, migration, and supported ENCC transplantation. Transcriptome‐wide mRNA sequencing identified MAPK signaling as the top differentially regulated pathway in response to SCFA exposure, and inhibition of MEK1/2 signaling abrogated the SCFA‐mediated effects on ENCC. This study demonstrates that FMT improves cell therapy for hypoganglionosis via short‐chain fatty acid metabolism‐induced MEK1/2 signaling. Synopsis Fecal microbiota transplantation synergy with enteric neural crest‐derived cell transplantation is tested in a rat model of hypoganglianosis to provide a non‐surgical treatment option of neurocristopathies including Hirschsprung disease. The intestinal microenvironment in a rat model of hypoganglionosis negatively influences enteric neural crest‐derived cell (ENCC) proliferation and migration Fecal microbiota transplantation (FMT) relieves hypoganglionosis symptoms and promotes ENCC transplantation in vitro and vivo. Some genera, particularly Bacteroides and Clostridium , increased after FMT, which coincided with short‐chain fatty acid (SCFA) production. SCFA exposure stimulated ENCC proliferation, migration, and supported ENCC transplantation in the treatment of hypoganglionosis via the MEK1/2 signaling pathway. Graphical Abstract Fecal microbiota transplantation enhances enteric neural crest‐derived cell transplantation in a rat model of hypoganglionosis supporting a non‐surgical treatment option of neurocristopathies including Hirschsprung disease.</description><subject>Animals</subject><subject>Bacteroides</subject><subject>Cell therapy</subject><subject>Cell- and Tissue-Based Therapy</subject><subject>Clostridium</subject><subject>Dysbacteriosis</subject><subject>EMBO12</subject><subject>EMBO24</subject><subject>EMBO34</subject><subject>enteric neural crest‐derived cells</subject><subject>Fatty acids</subject><subject>Fatty Acids, Volatile - metabolism</subject><subject>Fecal Microbiota Transplantation</subject><subject>Fecal microflora</subject><subject>fecal transplantation</subject><subject>Feces</subject><subject>Gene sequencing</subject><subject>Hirschsprung disease</subject><subject>Hirschsprung Disease - genetics</subject><subject>Hirschsprung Disease - metabolism</subject><subject>Hirschsprung Disease - therapy</subject><subject>Hirschsprung's disease</subject><subject>Innervation</subject><subject>Intestine</subject><subject>Kinases</subject><subject>Large intestine</subject><subject>Life Sciences</subject><subject>MAP kinase</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Microbiota</subject><subject>Microenvironments</subject><subject>Microorganisms</subject><subject>Neural crest</subject><subject>Phenotypes</subject><subject>Rats</subject><subject>rRNA 16S</subject><subject>short‐chain fatty acids</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Signs and symptoms</subject><subject>Transcriptomes</subject><subject>Transplantation</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkTFv1DAcxS1ERY_CzoQssbCktR3H9kks7emOQlsxAHP0T-zkfErsYCeqsjHwAfiMfBJ8vUIFEsIevPze0_N7CL2g5JQWrGBnpq92p4wwRtPJl4_QgnJBMkZk8RgtCBM041Qtj9HTGHeEkEJJ-gQd5yJXTFK6QN82poYO97YOvrJ-BDwGcHHowI0wWu-wcVtwtYm4Nl2Hx60JMMzYOgw4wIh7r02HfYO38-BbcG2XRD7aiKsZf1xtzn98_W6dnmqj8c36ip4xHG3roLOuxQOM21uYn6GjBrpont-_J-jzZv1pdZldf3j7bnV-ndVc8GWWayULRpla6jqvNFfpSkl4QwUR0AAnUFdSCC2hUYUEk4oRVc11riRLkvwEvT74DsF_mUwcy97G_bfAGT_Fksk8laKokgl99Re681NIsfeUIFzQQpFEkQOV2osxmKYcgu0hzCUl5d1C5X6h8mGhJHl5bzxVvdG_Bb8mScCbA3BrOzP_17Bc31y8_8OfHuQxKV1rwkPwf2b6CRUKrnI</recordid><startdate>20230104</startdate><enddate>20230104</enddate><creator>Tian, Donghao</creator><creator>Xu, Wenyao</creator><creator>Pan, Weikang</creator><creator>Zheng, Baijun</creator><creator>Yang, Weili</creator><creator>Jia, Wanying</creator><creator>Liu, Yong</creator><creator>Garstka, Malgorzata A</creator><creator>Gao, Ya</creator><creator>Yu, Hui</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4617-7640</orcidid><orcidid>https://orcid.org/0000-0003-2896-7275</orcidid><orcidid>https://orcid.org/0000-0002-1886-6123</orcidid><orcidid>https://orcid.org/0000-0002-6729-6374</orcidid></search><sort><creationdate>20230104</creationdate><title>Fecal microbiota transplantation enhances cell therapy in a rat model of hypoganglionosis by SCFA‐induced MEK1/2 signaling pathway</title><author>Tian, Donghao ; Xu, Wenyao ; Pan, Weikang ; Zheng, Baijun ; Yang, Weili ; Jia, Wanying ; Liu, Yong ; Garstka, Malgorzata A ; Gao, Ya ; Yu, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4649-3d87521289dc3bd484847704f1606afa40acb766d7af857ae2026bc4d3872dc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Bacteroides</topic><topic>Cell therapy</topic><topic>Cell- and Tissue-Based Therapy</topic><topic>Clostridium</topic><topic>Dysbacteriosis</topic><topic>EMBO12</topic><topic>EMBO24</topic><topic>EMBO34</topic><topic>enteric neural crest‐derived cells</topic><topic>Fatty acids</topic><topic>Fatty Acids, Volatile - metabolism</topic><topic>Fecal Microbiota Transplantation</topic><topic>Fecal microflora</topic><topic>fecal transplantation</topic><topic>Feces</topic><topic>Gene sequencing</topic><topic>Hirschsprung disease</topic><topic>Hirschsprung Disease - genetics</topic><topic>Hirschsprung Disease - metabolism</topic><topic>Hirschsprung Disease - therapy</topic><topic>Hirschsprung's disease</topic><topic>Innervation</topic><topic>Intestine</topic><topic>Kinases</topic><topic>Large intestine</topic><topic>Life Sciences</topic><topic>MAP kinase</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Microbiota</topic><topic>Microenvironments</topic><topic>Microorganisms</topic><topic>Neural crest</topic><topic>Phenotypes</topic><topic>Rats</topic><topic>rRNA 16S</topic><topic>short‐chain fatty acids</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Signs and symptoms</topic><topic>Transcriptomes</topic><topic>Transplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Donghao</creatorcontrib><creatorcontrib>Xu, Wenyao</creatorcontrib><creatorcontrib>Pan, Weikang</creatorcontrib><creatorcontrib>Zheng, Baijun</creatorcontrib><creatorcontrib>Yang, Weili</creatorcontrib><creatorcontrib>Jia, Wanying</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Garstka, Malgorzata A</creatorcontrib><creatorcontrib>Gao, Ya</creatorcontrib><creatorcontrib>Yu, Hui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tian, Donghao</au><au>Xu, Wenyao</au><au>Pan, Weikang</au><au>Zheng, Baijun</au><au>Yang, Weili</au><au>Jia, Wanying</au><au>Liu, Yong</au><au>Garstka, Malgorzata A</au><au>Gao, Ya</au><au>Yu, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fecal microbiota transplantation enhances cell therapy in a rat model of hypoganglionosis by SCFA‐induced MEK1/2 signaling pathway</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2023-01-04</date><risdate>2023</risdate><volume>42</volume><issue>1</issue><spage>e111139</spage><epage>n/a</epage><pages>e111139-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>Hirschsprung disease (HSCR), one of several neurocristopathies in children, is characterized by nerve loss in the large intestine and is mainly treated by surgery, which causes severe complications. Enteric neural crest‐derived cell (ENCC) transplantation is a potential therapeutic strategy; however, so far with poor efficacy. Here, we assessed whether and how fecal microbiota transplantation (FMT) could improve ENCC transplantation in a rat model of hypoganglionosis; a condition similar to HSCR, with less intestinal innervation. We found that the hypoganglionosis intestinal microenvironment negatively influenced the ENCC functional phenotype in vitro and in vivo . Combining 16S rDNA sequencing and targeted mass spectrometry revealed microbial dysbiosis and reduced short‐chain fatty acid (SCFA) production in the hypoganglionic gut. FMT increased the abundance of Bacteroides and Clostridium , SCFA production, and improved outcomes following ENCC transplantation. SCFAs alone stimulated ENCC proliferation, migration, and supported ENCC transplantation. Transcriptome‐wide mRNA sequencing identified MAPK signaling as the top differentially regulated pathway in response to SCFA exposure, and inhibition of MEK1/2 signaling abrogated the SCFA‐mediated effects on ENCC. This study demonstrates that FMT improves cell therapy for hypoganglionosis via short‐chain fatty acid metabolism‐induced MEK1/2 signaling. Synopsis Fecal microbiota transplantation synergy with enteric neural crest‐derived cell transplantation is tested in a rat model of hypoganglianosis to provide a non‐surgical treatment option of neurocristopathies including Hirschsprung disease. The intestinal microenvironment in a rat model of hypoganglionosis negatively influences enteric neural crest‐derived cell (ENCC) proliferation and migration Fecal microbiota transplantation (FMT) relieves hypoganglionosis symptoms and promotes ENCC transplantation in vitro and vivo. Some genera, particularly Bacteroides and Clostridium , increased after FMT, which coincided with short‐chain fatty acid (SCFA) production. SCFA exposure stimulated ENCC proliferation, migration, and supported ENCC transplantation in the treatment of hypoganglionosis via the MEK1/2 signaling pathway. Graphical Abstract Fecal microbiota transplantation enhances enteric neural crest‐derived cell transplantation in a rat model of hypoganglionosis supporting a non‐surgical treatment option of neurocristopathies including Hirschsprung disease.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36382711</pmid><doi>10.15252/embj.2022111139</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4617-7640</orcidid><orcidid>https://orcid.org/0000-0003-2896-7275</orcidid><orcidid>https://orcid.org/0000-0002-1886-6123</orcidid><orcidid>https://orcid.org/0000-0002-6729-6374</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2023-01, Vol.42 (1), p.e111139-n/a
issn 0261-4189
1460-2075
language eng
recordid cdi_proquest_miscellaneous_2737118187
source Springer Nature OA Free Journals
subjects Animals
Bacteroides
Cell therapy
Cell- and Tissue-Based Therapy
Clostridium
Dysbacteriosis
EMBO12
EMBO24
EMBO34
enteric neural crest‐derived cells
Fatty acids
Fatty Acids, Volatile - metabolism
Fecal Microbiota Transplantation
Fecal microflora
fecal transplantation
Feces
Gene sequencing
Hirschsprung disease
Hirschsprung Disease - genetics
Hirschsprung Disease - metabolism
Hirschsprung Disease - therapy
Hirschsprung's disease
Innervation
Intestine
Kinases
Large intestine
Life Sciences
MAP kinase
Mass spectrometry
Mass spectroscopy
Microbiota
Microenvironments
Microorganisms
Neural crest
Phenotypes
Rats
rRNA 16S
short‐chain fatty acids
Signal Transduction
Signaling
Signs and symptoms
Transcriptomes
Transplantation
title Fecal microbiota transplantation enhances cell therapy in a rat model of hypoganglionosis by SCFA‐induced MEK1/2 signaling pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fecal%20microbiota%20transplantation%20enhances%20cell%20therapy%20in%20a%20rat%20model%20of%20hypoganglionosis%20by%20SCFA%E2%80%90induced%20MEK1/2%20signaling%20pathway&rft.jtitle=The%20EMBO%20journal&rft.au=Tian,%20Donghao&rft.date=2023-01-04&rft.volume=42&rft.issue=1&rft.spage=e111139&rft.epage=n/a&rft.pages=e111139-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2022111139&rft_dat=%3Cproquest_C6C%3E2760461580%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760461580&rft_id=info:pmid/36382711&rfr_iscdi=true