Effects of leaf-transmittance versus leaf-reflectance on bidirectional scattering from canopy/soil surface: An analytical study
A simple single-scattering model for a surface with sparse ereetophile plants is developed as a plane-parallel canopy consisting of small leaves (relative to leaf-to-leaf spacing) with a spherical-shell distribution of the leaf area. The contributions to the overall surface reflectance in the visibl...
Gespeichert in:
Veröffentlicht in: | Remote sensing of environment 1995-10, Vol.54 (1), p.49-60 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 60 |
---|---|
container_issue | 1 |
container_start_page | 49 |
container_title | Remote sensing of environment |
container_volume | 54 |
creator | Otterman, J. Brakke, T. Smith, J. |
description | A simple single-scattering model for a surface with sparse ereetophile plants is developed as a plane-parallel canopy consisting of small leaves (relative to leaf-to-leaf spacing) with a spherical-shell distribution of the leaf area. The contributions to the overall surface reflectance in the visible spectral bands by the soil-reflectance, leaf-reflection, and leaf-transmission (which are assumed isotropic) are analyzed under different view/illumination geometries. High values of leaf reflectance
r, relative to leaf transmittance
t, produce significantly different patterns of bidirectional reflectance, because
r and
t control the backscattering and the forward scattering, respectively. These two effects, especially strong at large solar zenith angles, produce high canopy reflectance at large view zenith angles around the principal plane. Model inversion with the PARABOLA bidirectional reflectance measurements over the Konza Prairie yield values of
r and
t for grassblades of this grassland canopy. The inversion results point to a possibility of assessing canopy condition from its bidirectional reflectances, as both
r and
t are sensitive to plant vigor and phenology. In an inversion with satellite measurements over a desert-scrub surface in the northern Sinai, the optical thickness of these dark plants (inferred in the visible band) and the near-infrared reflectance of the plant elements were inferred. The value of the optical thickness of this sparse canopy essentially did not depend on the assumed plant-element transmittance, but the inferred infrared reflectances of the plant elements were appreciably dependent. The canopy structure representation (the spherical-shell distribution of the planar leaf area) constitutes a rotation-invariant reflectance model. It allows formulation of the longwave exchanges identical to the conventional radiative transfer calculation through a layer of molecules or particles with a specified optical thickness. |
doi_str_mv | 10.1016/0034-4257(95)00128-N |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27369815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>003442579500128N</els_id><sourcerecordid>27369815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-edbd4c8c87b378558b56db41f00981583155d8c8576e90b94c9669e52fd4875d3</originalsourceid><addsrcrecordid>eNp9kE1LHTEUhoNU6K36B4qLLEqpi6nJzOSri4KIHwWxi-o6ZJITSZk7uU0ywl31rzfjiMuuQvI-5yXnQeiUkq-UUH5OSNc3fcvEF8XOCKGtbO4P0IZKoRoiSP8Obd6Q9-hDzr8rxKSgG_T3ynuwJePo8QjGNyWZKW9DKWaygJ8h5TmvSQI_VvTlPU54CC6keg9xMiPO1pQCKUxP2Ke4xdZMcbc_zzHUbE7eWPiGLyZsKrwvwS4jZXb7Y3TozZjh5PU8Qo_XVw-Xt83dz5sflxd3je1kVxpwg-uttFIMnZCMyYFxN_TUE6JkXaWjjLkaM8FBkUH1VnGugLXe9VIw1x2hz2vvLsU_M-SityFbGEczQZyzbkXHl6YK9itoU8y57qx3KWxN2mtK9GJbLyr1olIrpl9s6_s69um131QVo68Wbchvs61UgvOl_eOKeRO1eUoVefylGGeyVTX8voZQRTwHSDrbAFX3Klq7GP7_iX-XYJ2d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27369815</pqid></control><display><type>article</type><title>Effects of leaf-transmittance versus leaf-reflectance on bidirectional scattering from canopy/soil surface: An analytical study</title><source>Elsevier ScienceDirect Journals</source><creator>Otterman, J. ; Brakke, T. ; Smith, J.</creator><creatorcontrib>Otterman, J. ; Brakke, T. ; Smith, J.</creatorcontrib><description>A simple single-scattering model for a surface with sparse ereetophile plants is developed as a plane-parallel canopy consisting of small leaves (relative to leaf-to-leaf spacing) with a spherical-shell distribution of the leaf area. The contributions to the overall surface reflectance in the visible spectral bands by the soil-reflectance, leaf-reflection, and leaf-transmission (which are assumed isotropic) are analyzed under different view/illumination geometries. High values of leaf reflectance
r, relative to leaf transmittance
t, produce significantly different patterns of bidirectional reflectance, because
r and
t control the backscattering and the forward scattering, respectively. These two effects, especially strong at large solar zenith angles, produce high canopy reflectance at large view zenith angles around the principal plane. Model inversion with the PARABOLA bidirectional reflectance measurements over the Konza Prairie yield values of
r and
t for grassblades of this grassland canopy. The inversion results point to a possibility of assessing canopy condition from its bidirectional reflectances, as both
r and
t are sensitive to plant vigor and phenology. In an inversion with satellite measurements over a desert-scrub surface in the northern Sinai, the optical thickness of these dark plants (inferred in the visible band) and the near-infrared reflectance of the plant elements were inferred. The value of the optical thickness of this sparse canopy essentially did not depend on the assumed plant-element transmittance, but the inferred infrared reflectances of the plant elements were appreciably dependent. The canopy structure representation (the spherical-shell distribution of the planar leaf area) constitutes a rotation-invariant reflectance model. It allows formulation of the longwave exchanges identical to the conventional radiative transfer calculation through a layer of molecules or particles with a specified optical thickness.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/0034-4257(95)00128-N</identifier><identifier>CODEN: RSEEA7</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>ABSORBANCE ; ABSORBANCIA ; AERIAL SURVEYING ; Animal, plant and microbial ecology ; Biological and medical sciences ; CANOPY ; COUVERT ; CUBIERTA DE COPAS ; EGIPTO ; EGYPT ; EGYPTE ; EQUATIONS ; FEUILLE ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; GRAMINEAE ; GRAMINEAS ; GRAMINEE ; GRASSES ; HOJAS ; KANSAS ; LEAVES ; MATEMATICAS ; MATHEMATICAL MODELS ; MATHEMATICS ; MATHEMATIQUE ; MATORRAL ; MODELE MATHEMATIQUE ; MODELOS MATEMATICOS ; PRADERAS DE AMERICA DEL NORTE ; PRAIRIE ; PRAIRIES ; RECONOCIMIENTO AEREO ; REFLECTANCE ; REFLECTANCIA ; RELEVE AERIEN ; REMOTE SENSING ; SATELITES ; SATELLITE ; SATELLITES ; SCRUB ; SMALL LAMBERTIAN SPHERES MODEL ; SOIL ; SOL ; SUELO ; TELEDETECCION ; TELEDETECTION ; Teledetection and vegetation maps ; VEGETACION ; VEGETATION</subject><ispartof>Remote sensing of environment, 1995-10, Vol.54 (1), p.49-60</ispartof><rights>1995</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-edbd4c8c87b378558b56db41f00981583155d8c8576e90b94c9669e52fd4875d3</citedby><cites>FETCH-LOGICAL-c383t-edbd4c8c87b378558b56db41f00981583155d8c8576e90b94c9669e52fd4875d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0034-4257(95)00128-N$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2897665$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Otterman, J.</creatorcontrib><creatorcontrib>Brakke, T.</creatorcontrib><creatorcontrib>Smith, J.</creatorcontrib><title>Effects of leaf-transmittance versus leaf-reflectance on bidirectional scattering from canopy/soil surface: An analytical study</title><title>Remote sensing of environment</title><description>A simple single-scattering model for a surface with sparse ereetophile plants is developed as a plane-parallel canopy consisting of small leaves (relative to leaf-to-leaf spacing) with a spherical-shell distribution of the leaf area. The contributions to the overall surface reflectance in the visible spectral bands by the soil-reflectance, leaf-reflection, and leaf-transmission (which are assumed isotropic) are analyzed under different view/illumination geometries. High values of leaf reflectance
r, relative to leaf transmittance
t, produce significantly different patterns of bidirectional reflectance, because
r and
t control the backscattering and the forward scattering, respectively. These two effects, especially strong at large solar zenith angles, produce high canopy reflectance at large view zenith angles around the principal plane. Model inversion with the PARABOLA bidirectional reflectance measurements over the Konza Prairie yield values of
r and
t for grassblades of this grassland canopy. The inversion results point to a possibility of assessing canopy condition from its bidirectional reflectances, as both
r and
t are sensitive to plant vigor and phenology. In an inversion with satellite measurements over a desert-scrub surface in the northern Sinai, the optical thickness of these dark plants (inferred in the visible band) and the near-infrared reflectance of the plant elements were inferred. The value of the optical thickness of this sparse canopy essentially did not depend on the assumed plant-element transmittance, but the inferred infrared reflectances of the plant elements were appreciably dependent. The canopy structure representation (the spherical-shell distribution of the planar leaf area) constitutes a rotation-invariant reflectance model. It allows formulation of the longwave exchanges identical to the conventional radiative transfer calculation through a layer of molecules or particles with a specified optical thickness.</description><subject>ABSORBANCE</subject><subject>ABSORBANCIA</subject><subject>AERIAL SURVEYING</subject><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>CANOPY</subject><subject>COUVERT</subject><subject>CUBIERTA DE COPAS</subject><subject>EGIPTO</subject><subject>EGYPT</subject><subject>EGYPTE</subject><subject>EQUATIONS</subject><subject>FEUILLE</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>GRAMINEAE</subject><subject>GRAMINEAS</subject><subject>GRAMINEE</subject><subject>GRASSES</subject><subject>HOJAS</subject><subject>KANSAS</subject><subject>LEAVES</subject><subject>MATEMATICAS</subject><subject>MATHEMATICAL MODELS</subject><subject>MATHEMATICS</subject><subject>MATHEMATIQUE</subject><subject>MATORRAL</subject><subject>MODELE MATHEMATIQUE</subject><subject>MODELOS MATEMATICOS</subject><subject>PRADERAS DE AMERICA DEL NORTE</subject><subject>PRAIRIE</subject><subject>PRAIRIES</subject><subject>RECONOCIMIENTO AEREO</subject><subject>REFLECTANCE</subject><subject>REFLECTANCIA</subject><subject>RELEVE AERIEN</subject><subject>REMOTE SENSING</subject><subject>SATELITES</subject><subject>SATELLITE</subject><subject>SATELLITES</subject><subject>SCRUB</subject><subject>SMALL LAMBERTIAN SPHERES MODEL</subject><subject>SOIL</subject><subject>SOL</subject><subject>SUELO</subject><subject>TELEDETECCION</subject><subject>TELEDETECTION</subject><subject>Teledetection and vegetation maps</subject><subject>VEGETACION</subject><subject>VEGETATION</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LHTEUhoNU6K36B4qLLEqpi6nJzOSri4KIHwWxi-o6ZJITSZk7uU0ywl31rzfjiMuuQvI-5yXnQeiUkq-UUH5OSNc3fcvEF8XOCKGtbO4P0IZKoRoiSP8Obd6Q9-hDzr8rxKSgG_T3ynuwJePo8QjGNyWZKW9DKWaygJ8h5TmvSQI_VvTlPU54CC6keg9xMiPO1pQCKUxP2Ke4xdZMcbc_zzHUbE7eWPiGLyZsKrwvwS4jZXb7Y3TozZjh5PU8Qo_XVw-Xt83dz5sflxd3je1kVxpwg-uttFIMnZCMyYFxN_TUE6JkXaWjjLkaM8FBkUH1VnGugLXe9VIw1x2hz2vvLsU_M-SityFbGEczQZyzbkXHl6YK9itoU8y57qx3KWxN2mtK9GJbLyr1olIrpl9s6_s69um131QVo68Wbchvs61UgvOl_eOKeRO1eUoVefylGGeyVTX8voZQRTwHSDrbAFX3Klq7GP7_iX-XYJ2d</recordid><startdate>19951001</startdate><enddate>19951001</enddate><creator>Otterman, J.</creator><creator>Brakke, T.</creator><creator>Smith, J.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19951001</creationdate><title>Effects of leaf-transmittance versus leaf-reflectance on bidirectional scattering from canopy/soil surface: An analytical study</title><author>Otterman, J. ; Brakke, T. ; Smith, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-edbd4c8c87b378558b56db41f00981583155d8c8576e90b94c9669e52fd4875d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>ABSORBANCE</topic><topic>ABSORBANCIA</topic><topic>AERIAL SURVEYING</topic><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>CANOPY</topic><topic>COUVERT</topic><topic>CUBIERTA DE COPAS</topic><topic>EGIPTO</topic><topic>EGYPT</topic><topic>EGYPTE</topic><topic>EQUATIONS</topic><topic>FEUILLE</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>GRAMINEAE</topic><topic>GRAMINEAS</topic><topic>GRAMINEE</topic><topic>GRASSES</topic><topic>HOJAS</topic><topic>KANSAS</topic><topic>LEAVES</topic><topic>MATEMATICAS</topic><topic>MATHEMATICAL MODELS</topic><topic>MATHEMATICS</topic><topic>MATHEMATIQUE</topic><topic>MATORRAL</topic><topic>MODELE MATHEMATIQUE</topic><topic>MODELOS MATEMATICOS</topic><topic>PRADERAS DE AMERICA DEL NORTE</topic><topic>PRAIRIE</topic><topic>PRAIRIES</topic><topic>RECONOCIMIENTO AEREO</topic><topic>REFLECTANCE</topic><topic>REFLECTANCIA</topic><topic>RELEVE AERIEN</topic><topic>REMOTE SENSING</topic><topic>SATELITES</topic><topic>SATELLITE</topic><topic>SATELLITES</topic><topic>SCRUB</topic><topic>SMALL LAMBERTIAN SPHERES MODEL</topic><topic>SOIL</topic><topic>SOL</topic><topic>SUELO</topic><topic>TELEDETECCION</topic><topic>TELEDETECTION</topic><topic>Teledetection and vegetation maps</topic><topic>VEGETACION</topic><topic>VEGETATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otterman, J.</creatorcontrib><creatorcontrib>Brakke, T.</creatorcontrib><creatorcontrib>Smith, J.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Otterman, J.</au><au>Brakke, T.</au><au>Smith, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of leaf-transmittance versus leaf-reflectance on bidirectional scattering from canopy/soil surface: An analytical study</atitle><jtitle>Remote sensing of environment</jtitle><date>1995-10-01</date><risdate>1995</risdate><volume>54</volume><issue>1</issue><spage>49</spage><epage>60</epage><pages>49-60</pages><issn>0034-4257</issn><eissn>1879-0704</eissn><coden>RSEEA7</coden><abstract>A simple single-scattering model for a surface with sparse ereetophile plants is developed as a plane-parallel canopy consisting of small leaves (relative to leaf-to-leaf spacing) with a spherical-shell distribution of the leaf area. The contributions to the overall surface reflectance in the visible spectral bands by the soil-reflectance, leaf-reflection, and leaf-transmission (which are assumed isotropic) are analyzed under different view/illumination geometries. High values of leaf reflectance
r, relative to leaf transmittance
t, produce significantly different patterns of bidirectional reflectance, because
r and
t control the backscattering and the forward scattering, respectively. These two effects, especially strong at large solar zenith angles, produce high canopy reflectance at large view zenith angles around the principal plane. Model inversion with the PARABOLA bidirectional reflectance measurements over the Konza Prairie yield values of
r and
t for grassblades of this grassland canopy. The inversion results point to a possibility of assessing canopy condition from its bidirectional reflectances, as both
r and
t are sensitive to plant vigor and phenology. In an inversion with satellite measurements over a desert-scrub surface in the northern Sinai, the optical thickness of these dark plants (inferred in the visible band) and the near-infrared reflectance of the plant elements were inferred. The value of the optical thickness of this sparse canopy essentially did not depend on the assumed plant-element transmittance, but the inferred infrared reflectances of the plant elements were appreciably dependent. The canopy structure representation (the spherical-shell distribution of the planar leaf area) constitutes a rotation-invariant reflectance model. It allows formulation of the longwave exchanges identical to the conventional radiative transfer calculation through a layer of molecules or particles with a specified optical thickness.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/0034-4257(95)00128-N</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-4257 |
ispartof | Remote sensing of environment, 1995-10, Vol.54 (1), p.49-60 |
issn | 0034-4257 1879-0704 |
language | eng |
recordid | cdi_proquest_miscellaneous_27369815 |
source | Elsevier ScienceDirect Journals |
subjects | ABSORBANCE ABSORBANCIA AERIAL SURVEYING Animal, plant and microbial ecology Biological and medical sciences CANOPY COUVERT CUBIERTA DE COPAS EGIPTO EGYPT EGYPTE EQUATIONS FEUILLE Fundamental and applied biological sciences. Psychology General aspects. Techniques GRAMINEAE GRAMINEAS GRAMINEE GRASSES HOJAS KANSAS LEAVES MATEMATICAS MATHEMATICAL MODELS MATHEMATICS MATHEMATIQUE MATORRAL MODELE MATHEMATIQUE MODELOS MATEMATICOS PRADERAS DE AMERICA DEL NORTE PRAIRIE PRAIRIES RECONOCIMIENTO AEREO REFLECTANCE REFLECTANCIA RELEVE AERIEN REMOTE SENSING SATELITES SATELLITE SATELLITES SCRUB SMALL LAMBERTIAN SPHERES MODEL SOIL SOL SUELO TELEDETECCION TELEDETECTION Teledetection and vegetation maps VEGETACION VEGETATION |
title | Effects of leaf-transmittance versus leaf-reflectance on bidirectional scattering from canopy/soil surface: An analytical study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A35%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20leaf-transmittance%20versus%20leaf-reflectance%20on%20bidirectional%20scattering%20from%20canopy/soil%20surface:%20An%20analytical%20study&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Otterman,%20J.&rft.date=1995-10-01&rft.volume=54&rft.issue=1&rft.spage=49&rft.epage=60&rft.pages=49-60&rft.issn=0034-4257&rft.eissn=1879-0704&rft.coden=RSEEA7&rft_id=info:doi/10.1016/0034-4257(95)00128-N&rft_dat=%3Cproquest_cross%3E27369815%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27369815&rft_id=info:pmid/&rft_els_id=003442579500128N&rfr_iscdi=true |