Towards machine learning for hydrogel drug delivery systems
Hydrogel drug delivery system development is complex and laborious, and machine learning (ML) techniques hold great promise in accelerating the process. We highlight recent advances and strategies for data collection and ML, and we discuss the potential for and barriers to the broader use of ML for...
Gespeichert in:
Veröffentlicht in: | Trends in biotechnology (Regular ed.) 2023-04, Vol.41 (4), p.476-479 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 479 |
---|---|
container_issue | 4 |
container_start_page | 476 |
container_title | Trends in biotechnology (Regular ed.) |
container_volume | 41 |
creator | Owh, Cally Ho, Dean Loh, Xian Jun Xue, Kun |
description | Hydrogel drug delivery system development is complex and laborious, and machine learning (ML) techniques hold great promise in accelerating the process. We highlight recent advances and strategies for data collection and ML, and we discuss the potential for and barriers to the broader use of ML for hydrogel drug delivery systems. |
doi_str_mv | 10.1016/j.tibtech.2022.09.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2736664773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167779922002530</els_id><sourcerecordid>2736664773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-3e8f28e6f47b3ef98efd8ba8b8fc7336a44c5648fd5d9841e4b508d8ac6861ad3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOo7-BKXgxk1r0rR54EJEfIHgRtchTW5mMvShSavMvzcyows3ru7mO-dcPoROCC4IJuxiVYy-GcEsixKXZYFlgYncQTMiuMwplmwXzRLHc86lPECHMa4wxpRLso8OKKOckZLN0OXL8KmDjVmnzdL3kLWgQ-_7ReaGkC3XNgwLaDMbpkVmofUfENZZXMcRuniE9pxuIxxv7xy93t2-3DzkT8_3jzfXT7mhko45BeFKAcxVvKHgpABnRaNFI5zhlDJdVaZmlXC2tlJUBKqmxsIKbZhgRFs6R-eb3rcwvE8QR9X5aKBtdQ_DFFXJKWOs4qlsjs7-oKthCn36LlGCl2XNcZ2oekOZMMQYwKm34Dsd1opg9W1XrdTWrvq2q7BUyW7KnW7bp6YD-5v60ZmAqw0ASceHh6Ci8dAbsD6AGZUd_D8TX-qejbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787225705</pqid></control><display><type>article</type><title>Towards machine learning for hydrogel drug delivery systems</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>ProQuest Central UK/Ireland</source><creator>Owh, Cally ; Ho, Dean ; Loh, Xian Jun ; Xue, Kun</creator><creatorcontrib>Owh, Cally ; Ho, Dean ; Loh, Xian Jun ; Xue, Kun</creatorcontrib><description>Hydrogel drug delivery system development is complex and laborious, and machine learning (ML) techniques hold great promise in accelerating the process. We highlight recent advances and strategies for data collection and ML, and we discuss the potential for and barriers to the broader use of ML for hydrogel drug delivery systems.</description><identifier>ISSN: 0167-7799</identifier><identifier>EISSN: 1879-3096</identifier><identifier>DOI: 10.1016/j.tibtech.2022.09.019</identifier><identifier>PMID: 36376126</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Algorithms ; Artificial Intelligence ; Biomedical materials ; Data collection ; Data mining ; Datasets ; Drug delivery ; Drug delivery systems ; Fuzzy logic ; hydrogel ; Hydrogels ; Learning algorithms ; Libraries ; Machine Learning ; Neural networks ; Peptides ; Polymers ; Proteins</subject><ispartof>Trends in biotechnology (Regular ed.), 2023-04, Vol.41 (4), p.476-479</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><rights>2022. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-3e8f28e6f47b3ef98efd8ba8b8fc7336a44c5648fd5d9841e4b508d8ac6861ad3</citedby><cites>FETCH-LOGICAL-c393t-3e8f28e6f47b3ef98efd8ba8b8fc7336a44c5648fd5d9841e4b508d8ac6861ad3</cites><orcidid>0000-0002-5433-0297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2787225705?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36376126$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Owh, Cally</creatorcontrib><creatorcontrib>Ho, Dean</creatorcontrib><creatorcontrib>Loh, Xian Jun</creatorcontrib><creatorcontrib>Xue, Kun</creatorcontrib><title>Towards machine learning for hydrogel drug delivery systems</title><title>Trends in biotechnology (Regular ed.)</title><addtitle>Trends Biotechnol</addtitle><description>Hydrogel drug delivery system development is complex and laborious, and machine learning (ML) techniques hold great promise in accelerating the process. We highlight recent advances and strategies for data collection and ML, and we discuss the potential for and barriers to the broader use of ML for hydrogel drug delivery systems.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biomedical materials</subject><subject>Data collection</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>Fuzzy logic</subject><subject>hydrogel</subject><subject>Hydrogels</subject><subject>Learning algorithms</subject><subject>Libraries</subject><subject>Machine Learning</subject><subject>Neural networks</subject><subject>Peptides</subject><subject>Polymers</subject><subject>Proteins</subject><issn>0167-7799</issn><issn>1879-3096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkEtLxDAUhYMoOo7-BKXgxk1r0rR54EJEfIHgRtchTW5mMvShSavMvzcyows3ru7mO-dcPoROCC4IJuxiVYy-GcEsixKXZYFlgYncQTMiuMwplmwXzRLHc86lPECHMa4wxpRLso8OKKOckZLN0OXL8KmDjVmnzdL3kLWgQ-_7ReaGkC3XNgwLaDMbpkVmofUfENZZXMcRuniE9pxuIxxv7xy93t2-3DzkT8_3jzfXT7mhko45BeFKAcxVvKHgpABnRaNFI5zhlDJdVaZmlXC2tlJUBKqmxsIKbZhgRFs6R-eb3rcwvE8QR9X5aKBtdQ_DFFXJKWOs4qlsjs7-oKthCn36LlGCl2XNcZ2oekOZMMQYwKm34Dsd1opg9W1XrdTWrvq2q7BUyW7KnW7bp6YD-5v60ZmAqw0ASceHh6Ci8dAbsD6AGZUd_D8TX-qejbg</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Owh, Cally</creator><creator>Ho, Dean</creator><creator>Loh, Xian Jun</creator><creator>Xue, Kun</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5433-0297</orcidid></search><sort><creationdate>202304</creationdate><title>Towards machine learning for hydrogel drug delivery systems</title><author>Owh, Cally ; Ho, Dean ; Loh, Xian Jun ; Xue, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-3e8f28e6f47b3ef98efd8ba8b8fc7336a44c5648fd5d9841e4b508d8ac6861ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biomedical materials</topic><topic>Data collection</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>Fuzzy logic</topic><topic>hydrogel</topic><topic>Hydrogels</topic><topic>Learning algorithms</topic><topic>Libraries</topic><topic>Machine Learning</topic><topic>Neural networks</topic><topic>Peptides</topic><topic>Polymers</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Owh, Cally</creatorcontrib><creatorcontrib>Ho, Dean</creatorcontrib><creatorcontrib>Loh, Xian Jun</creatorcontrib><creatorcontrib>Xue, Kun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in biotechnology (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Owh, Cally</au><au>Ho, Dean</au><au>Loh, Xian Jun</au><au>Xue, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards machine learning for hydrogel drug delivery systems</atitle><jtitle>Trends in biotechnology (Regular ed.)</jtitle><addtitle>Trends Biotechnol</addtitle><date>2023-04</date><risdate>2023</risdate><volume>41</volume><issue>4</issue><spage>476</spage><epage>479</epage><pages>476-479</pages><issn>0167-7799</issn><eissn>1879-3096</eissn><abstract>Hydrogel drug delivery system development is complex and laborious, and machine learning (ML) techniques hold great promise in accelerating the process. We highlight recent advances and strategies for data collection and ML, and we discuss the potential for and barriers to the broader use of ML for hydrogel drug delivery systems.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>36376126</pmid><doi>10.1016/j.tibtech.2022.09.019</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-5433-0297</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7799 |
ispartof | Trends in biotechnology (Regular ed.), 2023-04, Vol.41 (4), p.476-479 |
issn | 0167-7799 1879-3096 |
language | eng |
recordid | cdi_proquest_miscellaneous_2736664773 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; ProQuest Central UK/Ireland |
subjects | Algorithms Artificial Intelligence Biomedical materials Data collection Data mining Datasets Drug delivery Drug delivery systems Fuzzy logic hydrogel Hydrogels Learning algorithms Libraries Machine Learning Neural networks Peptides Polymers Proteins |
title | Towards machine learning for hydrogel drug delivery systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20machine%20learning%20for%20hydrogel%20drug%20delivery%20systems&rft.jtitle=Trends%20in%20biotechnology%20(Regular%20ed.)&rft.au=Owh,%20Cally&rft.date=2023-04&rft.volume=41&rft.issue=4&rft.spage=476&rft.epage=479&rft.pages=476-479&rft.issn=0167-7799&rft.eissn=1879-3096&rft_id=info:doi/10.1016/j.tibtech.2022.09.019&rft_dat=%3Cproquest_cross%3E2736664773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787225705&rft_id=info:pmid/36376126&rft_els_id=S0167779922002530&rfr_iscdi=true |