Towards machine learning for hydrogel drug delivery systems

Hydrogel drug delivery system development is complex and laborious, and machine learning (ML) techniques hold great promise in accelerating the process. We highlight recent advances and strategies for data collection and ML, and we discuss the potential for and barriers to the broader use of ML for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in biotechnology (Regular ed.) 2023-04, Vol.41 (4), p.476-479
Hauptverfasser: Owh, Cally, Ho, Dean, Loh, Xian Jun, Xue, Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 479
container_issue 4
container_start_page 476
container_title Trends in biotechnology (Regular ed.)
container_volume 41
creator Owh, Cally
Ho, Dean
Loh, Xian Jun
Xue, Kun
description Hydrogel drug delivery system development is complex and laborious, and machine learning (ML) techniques hold great promise in accelerating the process. We highlight recent advances and strategies for data collection and ML, and we discuss the potential for and barriers to the broader use of ML for hydrogel drug delivery systems.
doi_str_mv 10.1016/j.tibtech.2022.09.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2736664773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167779922002530</els_id><sourcerecordid>2736664773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-3e8f28e6f47b3ef98efd8ba8b8fc7336a44c5648fd5d9841e4b508d8ac6861ad3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOo7-BKXgxk1r0rR54EJEfIHgRtchTW5mMvShSavMvzcyows3ru7mO-dcPoROCC4IJuxiVYy-GcEsixKXZYFlgYncQTMiuMwplmwXzRLHc86lPECHMa4wxpRLso8OKKOckZLN0OXL8KmDjVmnzdL3kLWgQ-_7ReaGkC3XNgwLaDMbpkVmofUfENZZXMcRuniE9pxuIxxv7xy93t2-3DzkT8_3jzfXT7mhko45BeFKAcxVvKHgpABnRaNFI5zhlDJdVaZmlXC2tlJUBKqmxsIKbZhgRFs6R-eb3rcwvE8QR9X5aKBtdQ_DFFXJKWOs4qlsjs7-oKthCn36LlGCl2XNcZ2oekOZMMQYwKm34Dsd1opg9W1XrdTWrvq2q7BUyW7KnW7bp6YD-5v60ZmAqw0ASceHh6Ci8dAbsD6AGZUd_D8TX-qejbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787225705</pqid></control><display><type>article</type><title>Towards machine learning for hydrogel drug delivery systems</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>ProQuest Central UK/Ireland</source><creator>Owh, Cally ; Ho, Dean ; Loh, Xian Jun ; Xue, Kun</creator><creatorcontrib>Owh, Cally ; Ho, Dean ; Loh, Xian Jun ; Xue, Kun</creatorcontrib><description>Hydrogel drug delivery system development is complex and laborious, and machine learning (ML) techniques hold great promise in accelerating the process. We highlight recent advances and strategies for data collection and ML, and we discuss the potential for and barriers to the broader use of ML for hydrogel drug delivery systems.</description><identifier>ISSN: 0167-7799</identifier><identifier>EISSN: 1879-3096</identifier><identifier>DOI: 10.1016/j.tibtech.2022.09.019</identifier><identifier>PMID: 36376126</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Algorithms ; Artificial Intelligence ; Biomedical materials ; Data collection ; Data mining ; Datasets ; Drug delivery ; Drug delivery systems ; Fuzzy logic ; hydrogel ; Hydrogels ; Learning algorithms ; Libraries ; Machine Learning ; Neural networks ; Peptides ; Polymers ; Proteins</subject><ispartof>Trends in biotechnology (Regular ed.), 2023-04, Vol.41 (4), p.476-479</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><rights>2022. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-3e8f28e6f47b3ef98efd8ba8b8fc7336a44c5648fd5d9841e4b508d8ac6861ad3</citedby><cites>FETCH-LOGICAL-c393t-3e8f28e6f47b3ef98efd8ba8b8fc7336a44c5648fd5d9841e4b508d8ac6861ad3</cites><orcidid>0000-0002-5433-0297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2787225705?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36376126$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Owh, Cally</creatorcontrib><creatorcontrib>Ho, Dean</creatorcontrib><creatorcontrib>Loh, Xian Jun</creatorcontrib><creatorcontrib>Xue, Kun</creatorcontrib><title>Towards machine learning for hydrogel drug delivery systems</title><title>Trends in biotechnology (Regular ed.)</title><addtitle>Trends Biotechnol</addtitle><description>Hydrogel drug delivery system development is complex and laborious, and machine learning (ML) techniques hold great promise in accelerating the process. We highlight recent advances and strategies for data collection and ML, and we discuss the potential for and barriers to the broader use of ML for hydrogel drug delivery systems.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biomedical materials</subject><subject>Data collection</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>Fuzzy logic</subject><subject>hydrogel</subject><subject>Hydrogels</subject><subject>Learning algorithms</subject><subject>Libraries</subject><subject>Machine Learning</subject><subject>Neural networks</subject><subject>Peptides</subject><subject>Polymers</subject><subject>Proteins</subject><issn>0167-7799</issn><issn>1879-3096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkEtLxDAUhYMoOo7-BKXgxk1r0rR54EJEfIHgRtchTW5mMvShSavMvzcyows3ru7mO-dcPoROCC4IJuxiVYy-GcEsixKXZYFlgYncQTMiuMwplmwXzRLHc86lPECHMa4wxpRLso8OKKOckZLN0OXL8KmDjVmnzdL3kLWgQ-_7ReaGkC3XNgwLaDMbpkVmofUfENZZXMcRuniE9pxuIxxv7xy93t2-3DzkT8_3jzfXT7mhko45BeFKAcxVvKHgpABnRaNFI5zhlDJdVaZmlXC2tlJUBKqmxsIKbZhgRFs6R-eb3rcwvE8QR9X5aKBtdQ_DFFXJKWOs4qlsjs7-oKthCn36LlGCl2XNcZ2oekOZMMQYwKm34Dsd1opg9W1XrdTWrvq2q7BUyW7KnW7bp6YD-5v60ZmAqw0ASceHh6Ci8dAbsD6AGZUd_D8TX-qejbg</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Owh, Cally</creator><creator>Ho, Dean</creator><creator>Loh, Xian Jun</creator><creator>Xue, Kun</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5433-0297</orcidid></search><sort><creationdate>202304</creationdate><title>Towards machine learning for hydrogel drug delivery systems</title><author>Owh, Cally ; Ho, Dean ; Loh, Xian Jun ; Xue, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-3e8f28e6f47b3ef98efd8ba8b8fc7336a44c5648fd5d9841e4b508d8ac6861ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biomedical materials</topic><topic>Data collection</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>Fuzzy logic</topic><topic>hydrogel</topic><topic>Hydrogels</topic><topic>Learning algorithms</topic><topic>Libraries</topic><topic>Machine Learning</topic><topic>Neural networks</topic><topic>Peptides</topic><topic>Polymers</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Owh, Cally</creatorcontrib><creatorcontrib>Ho, Dean</creatorcontrib><creatorcontrib>Loh, Xian Jun</creatorcontrib><creatorcontrib>Xue, Kun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in biotechnology (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Owh, Cally</au><au>Ho, Dean</au><au>Loh, Xian Jun</au><au>Xue, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards machine learning for hydrogel drug delivery systems</atitle><jtitle>Trends in biotechnology (Regular ed.)</jtitle><addtitle>Trends Biotechnol</addtitle><date>2023-04</date><risdate>2023</risdate><volume>41</volume><issue>4</issue><spage>476</spage><epage>479</epage><pages>476-479</pages><issn>0167-7799</issn><eissn>1879-3096</eissn><abstract>Hydrogel drug delivery system development is complex and laborious, and machine learning (ML) techniques hold great promise in accelerating the process. We highlight recent advances and strategies for data collection and ML, and we discuss the potential for and barriers to the broader use of ML for hydrogel drug delivery systems.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>36376126</pmid><doi>10.1016/j.tibtech.2022.09.019</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-5433-0297</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-7799
ispartof Trends in biotechnology (Regular ed.), 2023-04, Vol.41 (4), p.476-479
issn 0167-7799
1879-3096
language eng
recordid cdi_proquest_miscellaneous_2736664773
source MEDLINE; Elsevier ScienceDirect Journals Complete; ProQuest Central UK/Ireland
subjects Algorithms
Artificial Intelligence
Biomedical materials
Data collection
Data mining
Datasets
Drug delivery
Drug delivery systems
Fuzzy logic
hydrogel
Hydrogels
Learning algorithms
Libraries
Machine Learning
Neural networks
Peptides
Polymers
Proteins
title Towards machine learning for hydrogel drug delivery systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20machine%20learning%20for%20hydrogel%20drug%20delivery%20systems&rft.jtitle=Trends%20in%20biotechnology%20(Regular%20ed.)&rft.au=Owh,%20Cally&rft.date=2023-04&rft.volume=41&rft.issue=4&rft.spage=476&rft.epage=479&rft.pages=476-479&rft.issn=0167-7799&rft.eissn=1879-3096&rft_id=info:doi/10.1016/j.tibtech.2022.09.019&rft_dat=%3Cproquest_cross%3E2736664773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787225705&rft_id=info:pmid/36376126&rft_els_id=S0167779922002530&rfr_iscdi=true