A survey of the thermal stability of an active heat sink

In cases where forced convective cooling alone is inadequate, or where the size of the housing limits the heat sink's dimensions, ICs can be cooled using an active heat sink. Compared to a classical finned heat sink, it can benefit from a substantial size reduction or from an important enhancem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronics and reliability 1997-12, Vol.37 (12), p.1805-1812
Hauptverfasser: De Baetselier, Erwin, Goedertier, Wim, De Mey, Gilbert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1812
container_issue 12
container_start_page 1805
container_title Microelectronics and reliability
container_volume 37
creator De Baetselier, Erwin
Goedertier, Wim
De Mey, Gilbert
description In cases where forced convective cooling alone is inadequate, or where the size of the housing limits the heat sink's dimensions, ICs can be cooled using an active heat sink. Compared to a classical finned heat sink, it can benefit from a substantial size reduction or from an important enhancement of the heat transport from the IC to its surroundings. The active heat sink's function is based upon a Peltier-effect cooling system. The active heat sink controls the IC's thermal resistance to its surroundings. The Peltier-effect heat pump is a non-linear system. Therefore, surveys of the system's stability are far from evident. Thermo-electric models for both the Peltier-effect heat pump and a NTCR (Negative Temperature Coefficient Resistance) temperature sensor are presented. These are linked to thermal models for the IC packaging and a finned heat sink on one hand and to electronic models for the controlling circuit on the other hand. Simulation show non-linear thermal behaviour and system instabilities according to the power load on the IC, to the forward amplification of the circuit, but also to the ambient temperature change. The latter phenomenon occurs after power-on of the whole device of which the IC is a part. The theoretical results were confirmed by infrared thermographic measurements on a self constructed active heat sink.
doi_str_mv 10.1016/S0026-2714(97)00022-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27363489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002627149700022X</els_id><sourcerecordid>308211850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-4e5a3914c2d448b2ab59e10c8770b824db1aa1af0d14bbf8800792768c2ba4433</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QdiDiB5WM9l0kz1JKX5BwYMKvYVJNkuj292apIX-e9NWevUwDMM8M-_MS8gl0DugUN6_U8rKnAngN5W4pali-eyIDEAKllccZsdkcEBOyVkIXwkSFGBA5DgLK7-2m6xvsji32_ALbLMQUbvWxV0DuwxNdGubzS3GLLju-5ycNNgGe_GXh-Tz6fFj8pJP355fJ-NpbnhRxJzbERYVcMNqzqVmqEeVBWqkEFRLxmsNiIANrYFr3UiZDquYKKVhGnlaMSTX-71L3_-sbIhq4YKxbYud7VdBMVGUBZdVAkd70Pg-BG8btfRugX6jgKqtT2rnk9qaoCqhdj6pWZq7-hPAYLBtPHbGhcMwA1YAlwl72GM2Pbt21qtgnO2MrZ23Jqq6d_8I_QLBgnra</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27363489</pqid></control><display><type>article</type><title>A survey of the thermal stability of an active heat sink</title><source>Elsevier ScienceDirect Journals</source><creator>De Baetselier, Erwin ; Goedertier, Wim ; De Mey, Gilbert</creator><creatorcontrib>De Baetselier, Erwin ; Goedertier, Wim ; De Mey, Gilbert</creatorcontrib><description>In cases where forced convective cooling alone is inadequate, or where the size of the housing limits the heat sink's dimensions, ICs can be cooled using an active heat sink. Compared to a classical finned heat sink, it can benefit from a substantial size reduction or from an important enhancement of the heat transport from the IC to its surroundings. The active heat sink's function is based upon a Peltier-effect cooling system. The active heat sink controls the IC's thermal resistance to its surroundings. The Peltier-effect heat pump is a non-linear system. Therefore, surveys of the system's stability are far from evident. Thermo-electric models for both the Peltier-effect heat pump and a NTCR (Negative Temperature Coefficient Resistance) temperature sensor are presented. These are linked to thermal models for the IC packaging and a finned heat sink on one hand and to electronic models for the controlling circuit on the other hand. Simulation show non-linear thermal behaviour and system instabilities according to the power load on the IC, to the forward amplification of the circuit, but also to the ambient temperature change. The latter phenomenon occurs after power-on of the whole device of which the IC is a part. The theoretical results were confirmed by infrared thermographic measurements on a self constructed active heat sink.</description><identifier>ISSN: 0026-2714</identifier><identifier>EISSN: 1872-941X</identifier><identifier>DOI: 10.1016/S0026-2714(97)00022-X</identifier><identifier>CODEN: MCRLAS</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Computer simulation ; Cooling systems ; Electronics ; Electronics packaging ; Exact sciences and technology ; Integrated circuit manufacture ; Negative resistance ; Nonlinear systems ; Semiconductor device models ; Testing, measurement, noise and reliability ; Thermistors ; Thermodynamic stability ; Thermography (temperature measurement)</subject><ispartof>Microelectronics and reliability, 1997-12, Vol.37 (12), p.1805-1812</ispartof><rights>1997</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-4e5a3914c2d448b2ab59e10c8770b824db1aa1af0d14bbf8800792768c2ba4433</citedby><cites>FETCH-LOGICAL-c433t-4e5a3914c2d448b2ab59e10c8770b824db1aa1af0d14bbf8800792768c2ba4433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002627149700022X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2123148$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>De Baetselier, Erwin</creatorcontrib><creatorcontrib>Goedertier, Wim</creatorcontrib><creatorcontrib>De Mey, Gilbert</creatorcontrib><title>A survey of the thermal stability of an active heat sink</title><title>Microelectronics and reliability</title><description>In cases where forced convective cooling alone is inadequate, or where the size of the housing limits the heat sink's dimensions, ICs can be cooled using an active heat sink. Compared to a classical finned heat sink, it can benefit from a substantial size reduction or from an important enhancement of the heat transport from the IC to its surroundings. The active heat sink's function is based upon a Peltier-effect cooling system. The active heat sink controls the IC's thermal resistance to its surroundings. The Peltier-effect heat pump is a non-linear system. Therefore, surveys of the system's stability are far from evident. Thermo-electric models for both the Peltier-effect heat pump and a NTCR (Negative Temperature Coefficient Resistance) temperature sensor are presented. These are linked to thermal models for the IC packaging and a finned heat sink on one hand and to electronic models for the controlling circuit on the other hand. Simulation show non-linear thermal behaviour and system instabilities according to the power load on the IC, to the forward amplification of the circuit, but also to the ambient temperature change. The latter phenomenon occurs after power-on of the whole device of which the IC is a part. The theoretical results were confirmed by infrared thermographic measurements on a self constructed active heat sink.</description><subject>Applied sciences</subject><subject>Computer simulation</subject><subject>Cooling systems</subject><subject>Electronics</subject><subject>Electronics packaging</subject><subject>Exact sciences and technology</subject><subject>Integrated circuit manufacture</subject><subject>Negative resistance</subject><subject>Nonlinear systems</subject><subject>Semiconductor device models</subject><subject>Testing, measurement, noise and reliability</subject><subject>Thermistors</subject><subject>Thermodynamic stability</subject><subject>Thermography (temperature measurement)</subject><issn>0026-2714</issn><issn>1872-941X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QdiDiB5WM9l0kz1JKX5BwYMKvYVJNkuj292apIX-e9NWevUwDMM8M-_MS8gl0DugUN6_U8rKnAngN5W4pali-eyIDEAKllccZsdkcEBOyVkIXwkSFGBA5DgLK7-2m6xvsji32_ALbLMQUbvWxV0DuwxNdGubzS3GLLju-5ycNNgGe_GXh-Tz6fFj8pJP355fJ-NpbnhRxJzbERYVcMNqzqVmqEeVBWqkEFRLxmsNiIANrYFr3UiZDquYKKVhGnlaMSTX-71L3_-sbIhq4YKxbYud7VdBMVGUBZdVAkd70Pg-BG8btfRugX6jgKqtT2rnk9qaoCqhdj6pWZq7-hPAYLBtPHbGhcMwA1YAlwl72GM2Pbt21qtgnO2MrZ23Jqq6d_8I_QLBgnra</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>De Baetselier, Erwin</creator><creator>Goedertier, Wim</creator><creator>De Mey, Gilbert</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>19971201</creationdate><title>A survey of the thermal stability of an active heat sink</title><author>De Baetselier, Erwin ; Goedertier, Wim ; De Mey, Gilbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-4e5a3914c2d448b2ab59e10c8770b824db1aa1af0d14bbf8800792768c2ba4433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>Computer simulation</topic><topic>Cooling systems</topic><topic>Electronics</topic><topic>Electronics packaging</topic><topic>Exact sciences and technology</topic><topic>Integrated circuit manufacture</topic><topic>Negative resistance</topic><topic>Nonlinear systems</topic><topic>Semiconductor device models</topic><topic>Testing, measurement, noise and reliability</topic><topic>Thermistors</topic><topic>Thermodynamic stability</topic><topic>Thermography (temperature measurement)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Baetselier, Erwin</creatorcontrib><creatorcontrib>Goedertier, Wim</creatorcontrib><creatorcontrib>De Mey, Gilbert</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronics and reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Baetselier, Erwin</au><au>Goedertier, Wim</au><au>De Mey, Gilbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A survey of the thermal stability of an active heat sink</atitle><jtitle>Microelectronics and reliability</jtitle><date>1997-12-01</date><risdate>1997</risdate><volume>37</volume><issue>12</issue><spage>1805</spage><epage>1812</epage><pages>1805-1812</pages><issn>0026-2714</issn><eissn>1872-941X</eissn><coden>MCRLAS</coden><abstract>In cases where forced convective cooling alone is inadequate, or where the size of the housing limits the heat sink's dimensions, ICs can be cooled using an active heat sink. Compared to a classical finned heat sink, it can benefit from a substantial size reduction or from an important enhancement of the heat transport from the IC to its surroundings. The active heat sink's function is based upon a Peltier-effect cooling system. The active heat sink controls the IC's thermal resistance to its surroundings. The Peltier-effect heat pump is a non-linear system. Therefore, surveys of the system's stability are far from evident. Thermo-electric models for both the Peltier-effect heat pump and a NTCR (Negative Temperature Coefficient Resistance) temperature sensor are presented. These are linked to thermal models for the IC packaging and a finned heat sink on one hand and to electronic models for the controlling circuit on the other hand. Simulation show non-linear thermal behaviour and system instabilities according to the power load on the IC, to the forward amplification of the circuit, but also to the ambient temperature change. The latter phenomenon occurs after power-on of the whole device of which the IC is a part. The theoretical results were confirmed by infrared thermographic measurements on a self constructed active heat sink.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0026-2714(97)00022-X</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-2714
ispartof Microelectronics and reliability, 1997-12, Vol.37 (12), p.1805-1812
issn 0026-2714
1872-941X
language eng
recordid cdi_proquest_miscellaneous_27363489
source Elsevier ScienceDirect Journals
subjects Applied sciences
Computer simulation
Cooling systems
Electronics
Electronics packaging
Exact sciences and technology
Integrated circuit manufacture
Negative resistance
Nonlinear systems
Semiconductor device models
Testing, measurement, noise and reliability
Thermistors
Thermodynamic stability
Thermography (temperature measurement)
title A survey of the thermal stability of an active heat sink
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A31%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20survey%20of%20the%20thermal%20stability%20of%20an%20active%20heat%20sink&rft.jtitle=Microelectronics%20and%20reliability&rft.au=De%20Baetselier,%20Erwin&rft.date=1997-12-01&rft.volume=37&rft.issue=12&rft.spage=1805&rft.epage=1812&rft.pages=1805-1812&rft.issn=0026-2714&rft.eissn=1872-941X&rft.coden=MCRLAS&rft_id=info:doi/10.1016/S0026-2714(97)00022-X&rft_dat=%3Cproquest_cross%3E308211850%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27363489&rft_id=info:pmid/&rft_els_id=S002627149700022X&rfr_iscdi=true