Global fast non-singular terminal sliding-mode control for high-speed nanopositioning
This paper presents a new Global Fast Non-singular Terminal Sliding Mode Controller (GFNTSMC) that delivers high-precision tracking of high-frequency trajectories when applied to a piezo-driven nanopositioner. The control scheme is realized by combing inverse hysteresis model and global fast non-sin...
Gespeichert in:
Veröffentlicht in: | ISA transactions 2023-05, Vol.136, p.560-570 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 570 |
---|---|
container_issue | |
container_start_page | 560 |
container_title | ISA transactions |
container_volume | 136 |
creator | Wang, Geng Zhou, Yongsheng Ni, Lei Aphale, Sumeet S. |
description | This paper presents a new Global Fast Non-singular Terminal Sliding Mode Controller (GFNTSMC) that delivers high-precision tracking of high-frequency trajectories when applied to a piezo-driven nanopositioner. The control scheme is realized by combing inverse hysteresis model and global fast non-singular terminal sliding mode compensation. The inverse Bouc–Wen hysteresis model is used to calculate the required hysteresis-compensating feedforward control voltage according to the reference signal. The key uniqueness of the proposed control strategy is it’s red global fast convergence, achieved with high accuracy and high bandwidth. The stability of the reported GFNTSMC controller is proved with the Lyapunov theory. Its performance is verified through experimentally recorded tracking results, and its superiority over three benchmark control approaches, namely the Proportional–Integral–Derivative (PID), the Positive Position Feedback with integral action (PPF+I) and the conventional linear high-order sliding mode controller (LHOSMC) is demonstrated through comparative tracking error analysis. Its wide-band stability as well as its significant robustness to parameter uncertainty is also showcased.
•A high-order global fast nonsingular terminal sliding mode controller is proposed.•The stability and robustness of the controller are proved with the Lyapunov theory.•The system state can quickly reach the equilibrium point from any initial state.•Experimental results demonstrate significant accuracy improvement and superior robustness. |
doi_str_mv | 10.1016/j.isatra.2022.10.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2736304667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057822005584</els_id><sourcerecordid>2736304667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b96f8853674755fa07290773c2aff5ddd07adac38a3f2de68c87c2ebfe106e473</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoun78A5EevXSdpm2SXgQRv2DBi55DNpnsZmmTNekK_ntTVj16GnjnmRnmIeSygnkFFbvZzF1SY1RzCpTmaA5UHJBZJXhXTtEhmQFUXQktFyfkNKUNANC2E8fkpGY1pwzojLw_9WGp-sKqNBY--DI5v9r1KhYjxsH53Eq9Mzksh2Cw0MGPMWQ-xGLtVusybRFN4ZUP25Dc6ILP7Dk5sqpPePFTz8j748Pb_XO5eH16ub9blLoBMZbLjlkh2prxhretVcBpB5zXmiprW2MMcGWUroWqLTXIhBZcU1xarIBhw-szcr3fu43hY4dplINLGvteeQy7JCnPn0LD2IQ2e1THkFJEK7fRDSp-yQrkJFRu5F6onOxNaRaax65-LuyWA5q_oV-DGbjdA5j__HQYZdIOvUbjIupRmuD-v_ANeXOKMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736304667</pqid></control><display><type>article</type><title>Global fast non-singular terminal sliding-mode control for high-speed nanopositioning</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Geng ; Zhou, Yongsheng ; Ni, Lei ; Aphale, Sumeet S.</creator><creatorcontrib>Wang, Geng ; Zhou, Yongsheng ; Ni, Lei ; Aphale, Sumeet S.</creatorcontrib><description>This paper presents a new Global Fast Non-singular Terminal Sliding Mode Controller (GFNTSMC) that delivers high-precision tracking of high-frequency trajectories when applied to a piezo-driven nanopositioner. The control scheme is realized by combing inverse hysteresis model and global fast non-singular terminal sliding mode compensation. The inverse Bouc–Wen hysteresis model is used to calculate the required hysteresis-compensating feedforward control voltage according to the reference signal. The key uniqueness of the proposed control strategy is it’s red global fast convergence, achieved with high accuracy and high bandwidth. The stability of the reported GFNTSMC controller is proved with the Lyapunov theory. Its performance is verified through experimentally recorded tracking results, and its superiority over three benchmark control approaches, namely the Proportional–Integral–Derivative (PID), the Positive Position Feedback with integral action (PPF+I) and the conventional linear high-order sliding mode controller (LHOSMC) is demonstrated through comparative tracking error analysis. Its wide-band stability as well as its significant robustness to parameter uncertainty is also showcased.
•A high-order global fast nonsingular terminal sliding mode controller is proposed.•The stability and robustness of the controller are proved with the Lyapunov theory.•The system state can quickly reach the equilibrium point from any initial state.•Experimental results demonstrate significant accuracy improvement and superior robustness.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2022.10.028</identifier><identifier>PMID: 36372602</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Global fast non-singular SMC ; High order sliding surface ; Nanopositioning ; Sliding-mode control ; Trajectory tracking</subject><ispartof>ISA transactions, 2023-05, Vol.136, p.560-570</ispartof><rights>2022 ISA</rights><rights>Copyright © 2022 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b96f8853674755fa07290773c2aff5ddd07adac38a3f2de68c87c2ebfe106e473</citedby><cites>FETCH-LOGICAL-c408t-b96f8853674755fa07290773c2aff5ddd07adac38a3f2de68c87c2ebfe106e473</cites><orcidid>0000-0002-6876-3317 ; 0000-0002-1691-1648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0019057822005584$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36372602$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Geng</creatorcontrib><creatorcontrib>Zhou, Yongsheng</creatorcontrib><creatorcontrib>Ni, Lei</creatorcontrib><creatorcontrib>Aphale, Sumeet S.</creatorcontrib><title>Global fast non-singular terminal sliding-mode control for high-speed nanopositioning</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>This paper presents a new Global Fast Non-singular Terminal Sliding Mode Controller (GFNTSMC) that delivers high-precision tracking of high-frequency trajectories when applied to a piezo-driven nanopositioner. The control scheme is realized by combing inverse hysteresis model and global fast non-singular terminal sliding mode compensation. The inverse Bouc–Wen hysteresis model is used to calculate the required hysteresis-compensating feedforward control voltage according to the reference signal. The key uniqueness of the proposed control strategy is it’s red global fast convergence, achieved with high accuracy and high bandwidth. The stability of the reported GFNTSMC controller is proved with the Lyapunov theory. Its performance is verified through experimentally recorded tracking results, and its superiority over three benchmark control approaches, namely the Proportional–Integral–Derivative (PID), the Positive Position Feedback with integral action (PPF+I) and the conventional linear high-order sliding mode controller (LHOSMC) is demonstrated through comparative tracking error analysis. Its wide-band stability as well as its significant robustness to parameter uncertainty is also showcased.
•A high-order global fast nonsingular terminal sliding mode controller is proposed.•The stability and robustness of the controller are proved with the Lyapunov theory.•The system state can quickly reach the equilibrium point from any initial state.•Experimental results demonstrate significant accuracy improvement and superior robustness.</description><subject>Global fast non-singular SMC</subject><subject>High order sliding surface</subject><subject>Nanopositioning</subject><subject>Sliding-mode control</subject><subject>Trajectory tracking</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMoun78A5EevXSdpm2SXgQRv2DBi55DNpnsZmmTNekK_ntTVj16GnjnmRnmIeSygnkFFbvZzF1SY1RzCpTmaA5UHJBZJXhXTtEhmQFUXQktFyfkNKUNANC2E8fkpGY1pwzojLw_9WGp-sKqNBY--DI5v9r1KhYjxsH53Eq9Mzksh2Cw0MGPMWQ-xGLtVusybRFN4ZUP25Dc6ILP7Dk5sqpPePFTz8j748Pb_XO5eH16ub9blLoBMZbLjlkh2prxhretVcBpB5zXmiprW2MMcGWUroWqLTXIhBZcU1xarIBhw-szcr3fu43hY4dplINLGvteeQy7JCnPn0LD2IQ2e1THkFJEK7fRDSp-yQrkJFRu5F6onOxNaRaax65-LuyWA5q_oV-DGbjdA5j__HQYZdIOvUbjIupRmuD-v_ANeXOKMA</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Wang, Geng</creator><creator>Zhou, Yongsheng</creator><creator>Ni, Lei</creator><creator>Aphale, Sumeet S.</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6876-3317</orcidid><orcidid>https://orcid.org/0000-0002-1691-1648</orcidid></search><sort><creationdate>202305</creationdate><title>Global fast non-singular terminal sliding-mode control for high-speed nanopositioning</title><author>Wang, Geng ; Zhou, Yongsheng ; Ni, Lei ; Aphale, Sumeet S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b96f8853674755fa07290773c2aff5ddd07adac38a3f2de68c87c2ebfe106e473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Global fast non-singular SMC</topic><topic>High order sliding surface</topic><topic>Nanopositioning</topic><topic>Sliding-mode control</topic><topic>Trajectory tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Geng</creatorcontrib><creatorcontrib>Zhou, Yongsheng</creatorcontrib><creatorcontrib>Ni, Lei</creatorcontrib><creatorcontrib>Aphale, Sumeet S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Geng</au><au>Zhou, Yongsheng</au><au>Ni, Lei</au><au>Aphale, Sumeet S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global fast non-singular terminal sliding-mode control for high-speed nanopositioning</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2023-05</date><risdate>2023</risdate><volume>136</volume><spage>560</spage><epage>570</epage><pages>560-570</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>This paper presents a new Global Fast Non-singular Terminal Sliding Mode Controller (GFNTSMC) that delivers high-precision tracking of high-frequency trajectories when applied to a piezo-driven nanopositioner. The control scheme is realized by combing inverse hysteresis model and global fast non-singular terminal sliding mode compensation. The inverse Bouc–Wen hysteresis model is used to calculate the required hysteresis-compensating feedforward control voltage according to the reference signal. The key uniqueness of the proposed control strategy is it’s red global fast convergence, achieved with high accuracy and high bandwidth. The stability of the reported GFNTSMC controller is proved with the Lyapunov theory. Its performance is verified through experimentally recorded tracking results, and its superiority over three benchmark control approaches, namely the Proportional–Integral–Derivative (PID), the Positive Position Feedback with integral action (PPF+I) and the conventional linear high-order sliding mode controller (LHOSMC) is demonstrated through comparative tracking error analysis. Its wide-band stability as well as its significant robustness to parameter uncertainty is also showcased.
•A high-order global fast nonsingular terminal sliding mode controller is proposed.•The stability and robustness of the controller are proved with the Lyapunov theory.•The system state can quickly reach the equilibrium point from any initial state.•Experimental results demonstrate significant accuracy improvement and superior robustness.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>36372602</pmid><doi>10.1016/j.isatra.2022.10.028</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6876-3317</orcidid><orcidid>https://orcid.org/0000-0002-1691-1648</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-0578 |
ispartof | ISA transactions, 2023-05, Vol.136, p.560-570 |
issn | 0019-0578 1879-2022 |
language | eng |
recordid | cdi_proquest_miscellaneous_2736304667 |
source | Elsevier ScienceDirect Journals |
subjects | Global fast non-singular SMC High order sliding surface Nanopositioning Sliding-mode control Trajectory tracking |
title | Global fast non-singular terminal sliding-mode control for high-speed nanopositioning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A12%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20fast%20non-singular%20terminal%20sliding-mode%20control%20for%20high-speed%20nanopositioning&rft.jtitle=ISA%20transactions&rft.au=Wang,%20Geng&rft.date=2023-05&rft.volume=136&rft.spage=560&rft.epage=570&rft.pages=560-570&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2022.10.028&rft_dat=%3Cproquest_cross%3E2736304667%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2736304667&rft_id=info:pmid/36372602&rft_els_id=S0019057822005584&rfr_iscdi=true |