Design of Labyrinth Spillways

The capacity of a labyrinth spillway is a function of the total head, the effective crest length, and the crest coefficient. The crest coefficient depends on the total head, weir height, thickness, crest shape, apex configuration, and the angle of the side legs. Data and a procedure are presented fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydraulic engineering (New York, N.Y.) N.Y.), 1995, Vol.121 (3), p.247-255
Hauptverfasser: Tullis, J. Paul, Amanian, Nosratollah, Waldron, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 255
container_issue 3
container_start_page 247
container_title Journal of hydraulic engineering (New York, N.Y.)
container_volume 121
creator Tullis, J. Paul
Amanian, Nosratollah
Waldron, David
description The capacity of a labyrinth spillway is a function of the total head, the effective crest length, and the crest coefficient. The crest coefficient depends on the total head, weir height, thickness, crest shape, apex configuration, and the angle of the side legs. Data and a procedure are presented for designing labyrinth weirs for angles between 6° and 35°, and for a range of heads. The design procedure allows the angle of the side legs and the number of cycles to be varied until the desired layout and capacity are achieved. The solution is presented in a spreadsheet format that automatically calculates the dimensions for the labyrinth. Even though the design procedure is quite accurate, it is recommended that the capacity and performance be verified with a model study. The model can evaluate factors not included in the design procedure, like aeration effects at low heads, unusual flow conditions in the approach channel, and flow conditions in the discharge channel.
doi_str_mv 10.1061/(ASCE)0733-9429(1995)121:3(247)
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27356999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>165625</sourcerecordid><originalsourceid>FETCH-LOGICAL-a533t-7f2018d6afa1c180015a48b3ccebe4c3dd32d8bbdda38ac6500d9c66618c9b873</originalsourceid><addsrcrecordid>eNqNkUFLwzAYhoMoOKc_QdhBdDtUk35JmngQxjadMvQwBW8hTVPt6NqZbMj-vambHp0fhHyHh_d74UHoguBLgjm56vang1EPJwCRpLHsEilZj8TkGroxTXp7qEUkhSiRGO-j1i93iI68n2FMKJeihU6H1hdvVafOOxOdrl1RLd8700VRlp967Y_RQa5Lb0-2fxu93I6eB-No8nR3P-hPIs0AllGSx5iIjOtcE0NECGeaihSMsamlBrIM4kykaZZpENpwhnEmDeecCCNTkUAbnW9yF67-WFm_VPPCG1uWurL1yqs4AcallP8EGd4JEi6BQpjdoOCUsd2nCXAm4qQ5fbMBjau9dzZXC1fMtVsrglWjTqlGnWqUqEaJatSpoE6BCupCwNn2kvZGl7nTlSn8bwpQJgVtmr9usEBZNatXrgqO1MN49DgMDnAIxM1AeCH2eyc_Ff5u8AXReq9O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13658270</pqid></control><display><type>article</type><title>Design of Labyrinth Spillways</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Tullis, J. Paul ; Amanian, Nosratollah ; Waldron, David</creator><creatorcontrib>Tullis, J. Paul ; Amanian, Nosratollah ; Waldron, David</creatorcontrib><description>The capacity of a labyrinth spillway is a function of the total head, the effective crest length, and the crest coefficient. The crest coefficient depends on the total head, weir height, thickness, crest shape, apex configuration, and the angle of the side legs. Data and a procedure are presented for designing labyrinth weirs for angles between 6° and 35°, and for a range of heads. The design procedure allows the angle of the side legs and the number of cycles to be varied until the desired layout and capacity are achieved. The solution is presented in a spreadsheet format that automatically calculates the dimensions for the labyrinth. Even though the design procedure is quite accurate, it is recommended that the capacity and performance be verified with a model study. The model can evaluate factors not included in the design procedure, like aeration effects at low heads, unusual flow conditions in the approach channel, and flow conditions in the discharge channel.</description><identifier>ISSN: 0733-9429</identifier><identifier>EISSN: 1943-7900</identifier><identifier>DOI: 10.1061/(ASCE)0733-9429(1995)121:3(247)</identifier><identifier>CODEN: JHEND8</identifier><language>eng</language><publisher>Reston, VA: American Society of Civil Engineers</publisher><subject>Accuracy ; Aeration ; Applied sciences ; Buildings. Public works ; Capacity ; Coefficients ; Dams and subsidiary installations ; Design factors ; Discharge ; Exact sciences and technology ; Height ; Hydraulic constructions ; Hydraulic engineering ; Layout ; Legs ; Mathematical models ; Pressure head ; Q1 ; Spillways ; TECHNICAL PAPERS</subject><ispartof>Journal of hydraulic engineering (New York, N.Y.), 1995, Vol.121 (3), p.247-255</ispartof><rights>Copyright © 1995 American Society of Civil Engineers</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a533t-7f2018d6afa1c180015a48b3ccebe4c3dd32d8bbdda38ac6500d9c66618c9b873</citedby><cites>FETCH-LOGICAL-a533t-7f2018d6afa1c180015a48b3ccebe4c3dd32d8bbdda38ac6500d9c66618c9b873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)0733-9429(1995)121:3(247)$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9429(1995)121:3(247)$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,76193,76201</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3459843$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tullis, J. Paul</creatorcontrib><creatorcontrib>Amanian, Nosratollah</creatorcontrib><creatorcontrib>Waldron, David</creatorcontrib><title>Design of Labyrinth Spillways</title><title>Journal of hydraulic engineering (New York, N.Y.)</title><description>The capacity of a labyrinth spillway is a function of the total head, the effective crest length, and the crest coefficient. The crest coefficient depends on the total head, weir height, thickness, crest shape, apex configuration, and the angle of the side legs. Data and a procedure are presented for designing labyrinth weirs for angles between 6° and 35°, and for a range of heads. The design procedure allows the angle of the side legs and the number of cycles to be varied until the desired layout and capacity are achieved. The solution is presented in a spreadsheet format that automatically calculates the dimensions for the labyrinth. Even though the design procedure is quite accurate, it is recommended that the capacity and performance be verified with a model study. The model can evaluate factors not included in the design procedure, like aeration effects at low heads, unusual flow conditions in the approach channel, and flow conditions in the discharge channel.</description><subject>Accuracy</subject><subject>Aeration</subject><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Capacity</subject><subject>Coefficients</subject><subject>Dams and subsidiary installations</subject><subject>Design factors</subject><subject>Discharge</subject><subject>Exact sciences and technology</subject><subject>Height</subject><subject>Hydraulic constructions</subject><subject>Hydraulic engineering</subject><subject>Layout</subject><subject>Legs</subject><subject>Mathematical models</subject><subject>Pressure head</subject><subject>Q1</subject><subject>Spillways</subject><subject>TECHNICAL PAPERS</subject><issn>0733-9429</issn><issn>1943-7900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqNkUFLwzAYhoMoOKc_QdhBdDtUk35JmngQxjadMvQwBW8hTVPt6NqZbMj-vambHp0fhHyHh_d74UHoguBLgjm56vang1EPJwCRpLHsEilZj8TkGroxTXp7qEUkhSiRGO-j1i93iI68n2FMKJeihU6H1hdvVafOOxOdrl1RLd8700VRlp967Y_RQa5Lb0-2fxu93I6eB-No8nR3P-hPIs0AllGSx5iIjOtcE0NECGeaihSMsamlBrIM4kykaZZpENpwhnEmDeecCCNTkUAbnW9yF67-WFm_VPPCG1uWurL1yqs4AcallP8EGd4JEi6BQpjdoOCUsd2nCXAm4qQ5fbMBjau9dzZXC1fMtVsrglWjTqlGnWqUqEaJatSpoE6BCupCwNn2kvZGl7nTlSn8bwpQJgVtmr9usEBZNatXrgqO1MN49DgMDnAIxM1AeCH2eyc_Ff5u8AXReq9O</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Tullis, J. Paul</creator><creator>Amanian, Nosratollah</creator><creator>Waldron, David</creator><general>American Society of Civil Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7SU</scope></search><sort><creationdate>1995</creationdate><title>Design of Labyrinth Spillways</title><author>Tullis, J. Paul ; Amanian, Nosratollah ; Waldron, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a533t-7f2018d6afa1c180015a48b3ccebe4c3dd32d8bbdda38ac6500d9c66618c9b873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Accuracy</topic><topic>Aeration</topic><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Capacity</topic><topic>Coefficients</topic><topic>Dams and subsidiary installations</topic><topic>Design factors</topic><topic>Discharge</topic><topic>Exact sciences and technology</topic><topic>Height</topic><topic>Hydraulic constructions</topic><topic>Hydraulic engineering</topic><topic>Layout</topic><topic>Legs</topic><topic>Mathematical models</topic><topic>Pressure head</topic><topic>Q1</topic><topic>Spillways</topic><topic>TECHNICAL PAPERS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tullis, J. Paul</creatorcontrib><creatorcontrib>Amanian, Nosratollah</creatorcontrib><creatorcontrib>Waldron, David</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environmental Engineering Abstracts</collection><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tullis, J. Paul</au><au>Amanian, Nosratollah</au><au>Waldron, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Labyrinth Spillways</atitle><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle><date>1995</date><risdate>1995</risdate><volume>121</volume><issue>3</issue><spage>247</spage><epage>255</epage><pages>247-255</pages><issn>0733-9429</issn><eissn>1943-7900</eissn><coden>JHEND8</coden><abstract>The capacity of a labyrinth spillway is a function of the total head, the effective crest length, and the crest coefficient. The crest coefficient depends on the total head, weir height, thickness, crest shape, apex configuration, and the angle of the side legs. Data and a procedure are presented for designing labyrinth weirs for angles between 6° and 35°, and for a range of heads. The design procedure allows the angle of the side legs and the number of cycles to be varied until the desired layout and capacity are achieved. The solution is presented in a spreadsheet format that automatically calculates the dimensions for the labyrinth. Even though the design procedure is quite accurate, it is recommended that the capacity and performance be verified with a model study. The model can evaluate factors not included in the design procedure, like aeration effects at low heads, unusual flow conditions in the approach channel, and flow conditions in the discharge channel.</abstract><cop>Reston, VA</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)0733-9429(1995)121:3(247)</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0733-9429
ispartof Journal of hydraulic engineering (New York, N.Y.), 1995, Vol.121 (3), p.247-255
issn 0733-9429
1943-7900
language eng
recordid cdi_proquest_miscellaneous_27356999
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Accuracy
Aeration
Applied sciences
Buildings. Public works
Capacity
Coefficients
Dams and subsidiary installations
Design factors
Discharge
Exact sciences and technology
Height
Hydraulic constructions
Hydraulic engineering
Layout
Legs
Mathematical models
Pressure head
Q1
Spillways
TECHNICAL PAPERS
title Design of Labyrinth Spillways
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A24%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Labyrinth%20Spillways&rft.jtitle=Journal%20of%20hydraulic%20engineering%20(New%20York,%20N.Y.)&rft.au=Tullis,%20J.%20Paul&rft.date=1995&rft.volume=121&rft.issue=3&rft.spage=247&rft.epage=255&rft.pages=247-255&rft.issn=0733-9429&rft.eissn=1943-7900&rft.coden=JHEND8&rft_id=info:doi/10.1061/(ASCE)0733-9429(1995)121:3(247)&rft_dat=%3Cproquest_cross%3E165625%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=13658270&rft_id=info:pmid/&rfr_iscdi=true