Discrete minimum entropy quantization

We present a simple lower bound on the entropy of a quantized signal and a method for determining the minimum entropy quantization, subject to a maximum distortion, for a discrete memoryless random process. This quantization allows more efficient use of variable-order models for compression of image...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 1995-09, Vol.4 (9), p.1314-1317
Hauptverfasser: Gormish, M.J., Gill, J.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1317
container_issue 9
container_start_page 1314
container_title IEEE transactions on image processing
container_volume 4
creator Gormish, M.J.
Gill, J.T.
description We present a simple lower bound on the entropy of a quantized signal and a method for determining the minimum entropy quantization, subject to a maximum distortion, for a discrete memoryless random process. This quantization allows more efficient use of variable-order models for compression of images and sound.< >
doi_str_mv 10.1109/83.413176
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_27355534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>413176</ieee_id><sourcerecordid>734270354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-1cbd9ea5bd8a74ca15fdb5d93b37bd2b3fc1c2b0ba083f0cc9b3f1d512fbca2c3</originalsourceid><addsrcrecordid>eNqF0DtPwzAUBWALgWgpDKwMqAMPMaT4-hHHIypPqRILzJHtOJJRHq2dDOXX4ypR2cCLLfvTudZB6BzwAgDL-4wuGFAQ6QGagmSQYMzIYTxjLhIBTE7QSQhfGAPjkB6jCWREEkzEFF0_umC87ey8do2r-3pum8636-1806umc9-qc21zio5KVQV7Nu4z9Pn89LF8TVbvL2_Lh1ViqCRdAkYX0iqui0wJZhTwstC8kFRToQuiaWnAEI21whktsTEyXkHBgZTaKGLoDN0OuWvfbnoburyO37NVpRrb9iEXlBGBKWdR3vwpSUZSilP-PxSUc053iXcDNL4NwdsyX3tXK7_NAee7mvOM5kPN0V6Oob2ubfErx14juBqBCkZVpVeNcWHvaBoXo5FdDMxZa_ev45Af3ziMHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27355534</pqid></control><display><type>article</type><title>Discrete minimum entropy quantization</title><source>IEEE Electronic Library (IEL)</source><creator>Gormish, M.J. ; Gill, J.T.</creator><creatorcontrib>Gormish, M.J. ; Gill, J.T.</creatorcontrib><description>We present a simple lower bound on the entropy of a quantized signal and a method for determining the minimum entropy quantization, subject to a maximum distortion, for a discrete memoryless random process. This quantization allows more efficient use of variable-order models for compression of images and sound.&lt; &gt;</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/83.413176</identifier><identifier>PMID: 18292027</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Annealing ; Application software ; Applied sciences ; Distortion measurement ; Entropy ; Exact sciences and technology ; Image classification ; Information, signal and communications theory ; Labeling ; Quantization ; Relaxation methods ; Sampling, quantization ; Signal and communications theory ; Telecommunications and information theory ; Testing ; Viterbi algorithm</subject><ispartof>IEEE transactions on image processing, 1995-09, Vol.4 (9), p.1314-1317</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-1cbd9ea5bd8a74ca15fdb5d93b37bd2b3fc1c2b0ba083f0cc9b3f1d512fbca2c3</citedby><cites>FETCH-LOGICAL-c392t-1cbd9ea5bd8a74ca15fdb5d93b37bd2b3fc1c2b0ba083f0cc9b3f1d512fbca2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/413176$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/413176$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3666643$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18292027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gormish, M.J.</creatorcontrib><creatorcontrib>Gill, J.T.</creatorcontrib><title>Discrete minimum entropy quantization</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>We present a simple lower bound on the entropy of a quantized signal and a method for determining the minimum entropy quantization, subject to a maximum distortion, for a discrete memoryless random process. This quantization allows more efficient use of variable-order models for compression of images and sound.&lt; &gt;</description><subject>Annealing</subject><subject>Application software</subject><subject>Applied sciences</subject><subject>Distortion measurement</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>Image classification</subject><subject>Information, signal and communications theory</subject><subject>Labeling</subject><subject>Quantization</subject><subject>Relaxation methods</subject><subject>Sampling, quantization</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><subject>Testing</subject><subject>Viterbi algorithm</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqF0DtPwzAUBWALgWgpDKwMqAMPMaT4-hHHIypPqRILzJHtOJJRHq2dDOXX4ypR2cCLLfvTudZB6BzwAgDL-4wuGFAQ6QGagmSQYMzIYTxjLhIBTE7QSQhfGAPjkB6jCWREEkzEFF0_umC87ey8do2r-3pum8636-1806umc9-qc21zio5KVQV7Nu4z9Pn89LF8TVbvL2_Lh1ViqCRdAkYX0iqui0wJZhTwstC8kFRToQuiaWnAEI21whktsTEyXkHBgZTaKGLoDN0OuWvfbnoburyO37NVpRrb9iEXlBGBKWdR3vwpSUZSilP-PxSUc053iXcDNL4NwdsyX3tXK7_NAee7mvOM5kPN0V6Oob2ubfErx14juBqBCkZVpVeNcWHvaBoXo5FdDMxZa_ev45Af3ziMHQ</recordid><startdate>19950901</startdate><enddate>19950901</enddate><creator>Gormish, M.J.</creator><creator>Gill, J.T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19950901</creationdate><title>Discrete minimum entropy quantization</title><author>Gormish, M.J. ; Gill, J.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-1cbd9ea5bd8a74ca15fdb5d93b37bd2b3fc1c2b0ba083f0cc9b3f1d512fbca2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Annealing</topic><topic>Application software</topic><topic>Applied sciences</topic><topic>Distortion measurement</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>Image classification</topic><topic>Information, signal and communications theory</topic><topic>Labeling</topic><topic>Quantization</topic><topic>Relaxation methods</topic><topic>Sampling, quantization</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><topic>Testing</topic><topic>Viterbi algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gormish, M.J.</creatorcontrib><creatorcontrib>Gill, J.T.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gormish, M.J.</au><au>Gill, J.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete minimum entropy quantization</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>1995-09-01</date><risdate>1995</risdate><volume>4</volume><issue>9</issue><spage>1314</spage><epage>1317</epage><pages>1314-1317</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>We present a simple lower bound on the entropy of a quantized signal and a method for determining the minimum entropy quantization, subject to a maximum distortion, for a discrete memoryless random process. This quantization allows more efficient use of variable-order models for compression of images and sound.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18292027</pmid><doi>10.1109/83.413176</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 1995-09, Vol.4 (9), p.1314-1317
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_27355534
source IEEE Electronic Library (IEL)
subjects Annealing
Application software
Applied sciences
Distortion measurement
Entropy
Exact sciences and technology
Image classification
Information, signal and communications theory
Labeling
Quantization
Relaxation methods
Sampling, quantization
Signal and communications theory
Telecommunications and information theory
Testing
Viterbi algorithm
title Discrete minimum entropy quantization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20minimum%20entropy%20quantization&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Gormish,%20M.J.&rft.date=1995-09-01&rft.volume=4&rft.issue=9&rft.spage=1314&rft.epage=1317&rft.pages=1314-1317&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/83.413176&rft_dat=%3Cproquest_RIE%3E734270354%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27355534&rft_id=info:pmid/18292027&rft_ieee_id=413176&rfr_iscdi=true