Discrete minimum entropy quantization
We present a simple lower bound on the entropy of a quantized signal and a method for determining the minimum entropy quantization, subject to a maximum distortion, for a discrete memoryless random process. This quantization allows more efficient use of variable-order models for compression of image...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 1995-09, Vol.4 (9), p.1314-1317 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1317 |
---|---|
container_issue | 9 |
container_start_page | 1314 |
container_title | IEEE transactions on image processing |
container_volume | 4 |
creator | Gormish, M.J. Gill, J.T. |
description | We present a simple lower bound on the entropy of a quantized signal and a method for determining the minimum entropy quantization, subject to a maximum distortion, for a discrete memoryless random process. This quantization allows more efficient use of variable-order models for compression of images and sound.< > |
doi_str_mv | 10.1109/83.413176 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_27355534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>413176</ieee_id><sourcerecordid>734270354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-1cbd9ea5bd8a74ca15fdb5d93b37bd2b3fc1c2b0ba083f0cc9b3f1d512fbca2c3</originalsourceid><addsrcrecordid>eNqF0DtPwzAUBWALgWgpDKwMqAMPMaT4-hHHIypPqRILzJHtOJJRHq2dDOXX4ypR2cCLLfvTudZB6BzwAgDL-4wuGFAQ6QGagmSQYMzIYTxjLhIBTE7QSQhfGAPjkB6jCWREEkzEFF0_umC87ey8do2r-3pum8636-1806umc9-qc21zio5KVQV7Nu4z9Pn89LF8TVbvL2_Lh1ViqCRdAkYX0iqui0wJZhTwstC8kFRToQuiaWnAEI21whktsTEyXkHBgZTaKGLoDN0OuWvfbnoburyO37NVpRrb9iEXlBGBKWdR3vwpSUZSilP-PxSUc053iXcDNL4NwdsyX3tXK7_NAee7mvOM5kPN0V6Oob2ubfErx14juBqBCkZVpVeNcWHvaBoXo5FdDMxZa_ev45Af3ziMHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27355534</pqid></control><display><type>article</type><title>Discrete minimum entropy quantization</title><source>IEEE Electronic Library (IEL)</source><creator>Gormish, M.J. ; Gill, J.T.</creator><creatorcontrib>Gormish, M.J. ; Gill, J.T.</creatorcontrib><description>We present a simple lower bound on the entropy of a quantized signal and a method for determining the minimum entropy quantization, subject to a maximum distortion, for a discrete memoryless random process. This quantization allows more efficient use of variable-order models for compression of images and sound.< ></description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/83.413176</identifier><identifier>PMID: 18292027</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Annealing ; Application software ; Applied sciences ; Distortion measurement ; Entropy ; Exact sciences and technology ; Image classification ; Information, signal and communications theory ; Labeling ; Quantization ; Relaxation methods ; Sampling, quantization ; Signal and communications theory ; Telecommunications and information theory ; Testing ; Viterbi algorithm</subject><ispartof>IEEE transactions on image processing, 1995-09, Vol.4 (9), p.1314-1317</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-1cbd9ea5bd8a74ca15fdb5d93b37bd2b3fc1c2b0ba083f0cc9b3f1d512fbca2c3</citedby><cites>FETCH-LOGICAL-c392t-1cbd9ea5bd8a74ca15fdb5d93b37bd2b3fc1c2b0ba083f0cc9b3f1d512fbca2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/413176$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/413176$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3666643$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18292027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gormish, M.J.</creatorcontrib><creatorcontrib>Gill, J.T.</creatorcontrib><title>Discrete minimum entropy quantization</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>We present a simple lower bound on the entropy of a quantized signal and a method for determining the minimum entropy quantization, subject to a maximum distortion, for a discrete memoryless random process. This quantization allows more efficient use of variable-order models for compression of images and sound.< ></description><subject>Annealing</subject><subject>Application software</subject><subject>Applied sciences</subject><subject>Distortion measurement</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>Image classification</subject><subject>Information, signal and communications theory</subject><subject>Labeling</subject><subject>Quantization</subject><subject>Relaxation methods</subject><subject>Sampling, quantization</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><subject>Testing</subject><subject>Viterbi algorithm</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqF0DtPwzAUBWALgWgpDKwMqAMPMaT4-hHHIypPqRILzJHtOJJRHq2dDOXX4ypR2cCLLfvTudZB6BzwAgDL-4wuGFAQ6QGagmSQYMzIYTxjLhIBTE7QSQhfGAPjkB6jCWREEkzEFF0_umC87ey8do2r-3pum8636-1806umc9-qc21zio5KVQV7Nu4z9Pn89LF8TVbvL2_Lh1ViqCRdAkYX0iqui0wJZhTwstC8kFRToQuiaWnAEI21whktsTEyXkHBgZTaKGLoDN0OuWvfbnoburyO37NVpRrb9iEXlBGBKWdR3vwpSUZSilP-PxSUc053iXcDNL4NwdsyX3tXK7_NAee7mvOM5kPN0V6Oob2ubfErx14juBqBCkZVpVeNcWHvaBoXo5FdDMxZa_ev45Af3ziMHQ</recordid><startdate>19950901</startdate><enddate>19950901</enddate><creator>Gormish, M.J.</creator><creator>Gill, J.T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19950901</creationdate><title>Discrete minimum entropy quantization</title><author>Gormish, M.J. ; Gill, J.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-1cbd9ea5bd8a74ca15fdb5d93b37bd2b3fc1c2b0ba083f0cc9b3f1d512fbca2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Annealing</topic><topic>Application software</topic><topic>Applied sciences</topic><topic>Distortion measurement</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>Image classification</topic><topic>Information, signal and communications theory</topic><topic>Labeling</topic><topic>Quantization</topic><topic>Relaxation methods</topic><topic>Sampling, quantization</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><topic>Testing</topic><topic>Viterbi algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gormish, M.J.</creatorcontrib><creatorcontrib>Gill, J.T.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gormish, M.J.</au><au>Gill, J.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete minimum entropy quantization</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>1995-09-01</date><risdate>1995</risdate><volume>4</volume><issue>9</issue><spage>1314</spage><epage>1317</epage><pages>1314-1317</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>We present a simple lower bound on the entropy of a quantized signal and a method for determining the minimum entropy quantization, subject to a maximum distortion, for a discrete memoryless random process. This quantization allows more efficient use of variable-order models for compression of images and sound.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18292027</pmid><doi>10.1109/83.413176</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 1995-09, Vol.4 (9), p.1314-1317 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_27355534 |
source | IEEE Electronic Library (IEL) |
subjects | Annealing Application software Applied sciences Distortion measurement Entropy Exact sciences and technology Image classification Information, signal and communications theory Labeling Quantization Relaxation methods Sampling, quantization Signal and communications theory Telecommunications and information theory Testing Viterbi algorithm |
title | Discrete minimum entropy quantization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20minimum%20entropy%20quantization&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Gormish,%20M.J.&rft.date=1995-09-01&rft.volume=4&rft.issue=9&rft.spage=1314&rft.epage=1317&rft.pages=1314-1317&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/83.413176&rft_dat=%3Cproquest_RIE%3E734270354%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27355534&rft_id=info:pmid/18292027&rft_ieee_id=413176&rfr_iscdi=true |