TNFα-induced IDH1 hyperacetylation reprograms redox homeostasis and promotes the chemotherapeutic sensitivity

The heterogeneity and drug resistance of colorectal cancer (CRC) often lead to treatment failure. Isocitrate dehydrogenase 1 (IDH1), a rate-limiting enzyme in the tricarboxylic acid cycle, regulates the intracellular redox environment and mediates tumor cell resistance to chemotherapeutic drugs. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2023-01, Vol.42 (1), p.35-48
Hauptverfasser: Yang, Hao, Zhao, Xiaoping, Liu, Jianjun, Jin, Mingming, Liu, Xiyu, Yan, Jun, Yao, Xufeng, Mao, Xinyi, Li, Nan, Liang, Beibei, Xie, Wei, Zhang, Kunchi, Zhao, Jian, Liu, Liu, Huang, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 1
container_start_page 35
container_title Oncogene
container_volume 42
creator Yang, Hao
Zhao, Xiaoping
Liu, Jianjun
Jin, Mingming
Liu, Xiyu
Yan, Jun
Yao, Xufeng
Mao, Xinyi
Li, Nan
Liang, Beibei
Xie, Wei
Zhang, Kunchi
Zhao, Jian
Liu, Liu
Huang, Gang
description The heterogeneity and drug resistance of colorectal cancer (CRC) often lead to treatment failure. Isocitrate dehydrogenase 1 (IDH1), a rate-limiting enzyme in the tricarboxylic acid cycle, regulates the intracellular redox environment and mediates tumor cell resistance to chemotherapeutic drugs. The aim of this study was to elucidate the mechanism underlying the involvement of IDH1 acetylation in the development of CRC drug resistance under induction of TNFα. We found TNFα disrupted the interaction between SIRT1 and IDH1 and increased the level of acetylation at K115 of IDH1. Hyperacetylation of K115 was accompanied by protein ubiquitination, which increased its susceptibility to degradation compared to IDH1 K115R. TNFα-mediated hyperacetylation of K115 sensitized the CRC cells to 5FU and reduced the NADPH/NADP ratio to that of intracellular ROS. Furthermore, TNFα and 5FU inhibited CRC tumor growth in vivo, while the K115R-expressing tumor tissues developed 5FU resistance. In human CRC tissues, K115 acetylation was positively correlated with TNFα infiltration, and K115 hyperacetylation was associated with favorable prognosis compared to chemotherapy-induced deacetylation. Therefore, TNFα-induced hyperacetylation at the K115 site of IDH1 promotes antitumor redox homeostasis in CRC cells, and can be used as a marker to predict the response of CRC patients to chemotherapy.
doi_str_mv 10.1038/s41388-022-02528-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2735168848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2735168848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-e7b979fea475d5f8b040bbda130ce5ca28b32f32d271769479dae67dc04dcf403</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS0EopfCC7BAltiwCfg3tpeoUFqpgk1ZW449aVzdxBfbqchj8SI8E4ZbQGLBYuSx5pszozkIPafkNSVcvymCcq07wlgLyXS3PUA7KlTfSWnEQ7QjRpLOMM5O0JNSbgkhyhD2GJ3wnktGjNqh5frj-fdvXVzC6iHgy3cXFE_bAbLzULe9qzEtOMMhp5vs5tLSkL7iKc2QSnUlFuyWgFt5ThUKrhNgP0H7TE3iAGuNHhdYSqzxLtbtKXo0un2BZ_fvKfp8_v767KK7-vTh8uztVee5krUDNRhlRnBCySBHPRBBhiE4yokH6R3TA2cjZ4EpqnojlAkOehU8EcGPgvBT9Oqo2zb7skKpdo7Fw37vFkhrsUxxSXuthW7oy3_Q27TmpW3XqL7dWRhGG8WOlM-plAyjPeQ4u7xZSuxPN-zRDdvcsL_csFtrenEvvQ4zhD8tv8_fAH4ESistN5D_zv6P7A8cMZjK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760384921</pqid></control><display><type>article</type><title>TNFα-induced IDH1 hyperacetylation reprograms redox homeostasis and promotes the chemotherapeutic sensitivity</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yang, Hao ; Zhao, Xiaoping ; Liu, Jianjun ; Jin, Mingming ; Liu, Xiyu ; Yan, Jun ; Yao, Xufeng ; Mao, Xinyi ; Li, Nan ; Liang, Beibei ; Xie, Wei ; Zhang, Kunchi ; Zhao, Jian ; Liu, Liu ; Huang, Gang</creator><creatorcontrib>Yang, Hao ; Zhao, Xiaoping ; Liu, Jianjun ; Jin, Mingming ; Liu, Xiyu ; Yan, Jun ; Yao, Xufeng ; Mao, Xinyi ; Li, Nan ; Liang, Beibei ; Xie, Wei ; Zhang, Kunchi ; Zhao, Jian ; Liu, Liu ; Huang, Gang</creatorcontrib><description>The heterogeneity and drug resistance of colorectal cancer (CRC) often lead to treatment failure. Isocitrate dehydrogenase 1 (IDH1), a rate-limiting enzyme in the tricarboxylic acid cycle, regulates the intracellular redox environment and mediates tumor cell resistance to chemotherapeutic drugs. The aim of this study was to elucidate the mechanism underlying the involvement of IDH1 acetylation in the development of CRC drug resistance under induction of TNFα. We found TNFα disrupted the interaction between SIRT1 and IDH1 and increased the level of acetylation at K115 of IDH1. Hyperacetylation of K115 was accompanied by protein ubiquitination, which increased its susceptibility to degradation compared to IDH1 K115R. TNFα-mediated hyperacetylation of K115 sensitized the CRC cells to 5FU and reduced the NADPH/NADP ratio to that of intracellular ROS. Furthermore, TNFα and 5FU inhibited CRC tumor growth in vivo, while the K115R-expressing tumor tissues developed 5FU resistance. In human CRC tissues, K115 acetylation was positively correlated with TNFα infiltration, and K115 hyperacetylation was associated with favorable prognosis compared to chemotherapy-induced deacetylation. Therefore, TNFα-induced hyperacetylation at the K115 site of IDH1 promotes antitumor redox homeostasis in CRC cells, and can be used as a marker to predict the response of CRC patients to chemotherapy.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/s41388-022-02528-y</identifier><identifier>PMID: 36352097</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/19 ; 14/5 ; 38/1 ; 42/109 ; 42/89 ; 59/78 ; 631/67/2327 ; 631/80/458 ; 64/60 ; 82/51 ; 82/80 ; 96/31 ; Acetylation ; Apoptosis ; Cell Biology ; Cell Line, Tumor ; Chemotherapy ; Colorectal cancer ; Colorectal carcinoma ; Deacetylation ; Drug resistance ; Fluorouracil ; Homeostasis ; Human Genetics ; Humans ; Internal Medicine ; Intracellular ; Isocitrate dehydrogenase ; Isocitrate Dehydrogenase - metabolism ; Medicine ; Medicine &amp; Public Health ; Metastases ; Mutation ; Oncology ; Oxidation-Reduction ; SIRT1 protein ; Tricarboxylic acid cycle ; Tumor Necrosis Factor-alpha - metabolism ; Tumor Necrosis Factor-alpha - pharmacology ; Tumor necrosis factor-α ; Tumors ; Ubiquitination</subject><ispartof>Oncogene, 2023-01, Vol.42 (1), p.35-48</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-e7b979fea475d5f8b040bbda130ce5ca28b32f32d271769479dae67dc04dcf403</citedby><cites>FETCH-LOGICAL-c375t-e7b979fea475d5f8b040bbda130ce5ca28b32f32d271769479dae67dc04dcf403</cites><orcidid>0000-0002-8983-4137 ; 0000-0002-5786-7110 ; 0000-0001-8131-8886 ; 0000-0002-3781-7271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41388-022-02528-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41388-022-02528-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36352097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Zhao, Xiaoping</creatorcontrib><creatorcontrib>Liu, Jianjun</creatorcontrib><creatorcontrib>Jin, Mingming</creatorcontrib><creatorcontrib>Liu, Xiyu</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Yao, Xufeng</creatorcontrib><creatorcontrib>Mao, Xinyi</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><creatorcontrib>Liang, Beibei</creatorcontrib><creatorcontrib>Xie, Wei</creatorcontrib><creatorcontrib>Zhang, Kunchi</creatorcontrib><creatorcontrib>Zhao, Jian</creatorcontrib><creatorcontrib>Liu, Liu</creatorcontrib><creatorcontrib>Huang, Gang</creatorcontrib><title>TNFα-induced IDH1 hyperacetylation reprograms redox homeostasis and promotes the chemotherapeutic sensitivity</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>The heterogeneity and drug resistance of colorectal cancer (CRC) often lead to treatment failure. Isocitrate dehydrogenase 1 (IDH1), a rate-limiting enzyme in the tricarboxylic acid cycle, regulates the intracellular redox environment and mediates tumor cell resistance to chemotherapeutic drugs. The aim of this study was to elucidate the mechanism underlying the involvement of IDH1 acetylation in the development of CRC drug resistance under induction of TNFα. We found TNFα disrupted the interaction between SIRT1 and IDH1 and increased the level of acetylation at K115 of IDH1. Hyperacetylation of K115 was accompanied by protein ubiquitination, which increased its susceptibility to degradation compared to IDH1 K115R. TNFα-mediated hyperacetylation of K115 sensitized the CRC cells to 5FU and reduced the NADPH/NADP ratio to that of intracellular ROS. Furthermore, TNFα and 5FU inhibited CRC tumor growth in vivo, while the K115R-expressing tumor tissues developed 5FU resistance. In human CRC tissues, K115 acetylation was positively correlated with TNFα infiltration, and K115 hyperacetylation was associated with favorable prognosis compared to chemotherapy-induced deacetylation. Therefore, TNFα-induced hyperacetylation at the K115 site of IDH1 promotes antitumor redox homeostasis in CRC cells, and can be used as a marker to predict the response of CRC patients to chemotherapy.</description><subject>14/19</subject><subject>14/5</subject><subject>38/1</subject><subject>42/109</subject><subject>42/89</subject><subject>59/78</subject><subject>631/67/2327</subject><subject>631/80/458</subject><subject>64/60</subject><subject>82/51</subject><subject>82/80</subject><subject>96/31</subject><subject>Acetylation</subject><subject>Apoptosis</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Chemotherapy</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Deacetylation</subject><subject>Drug resistance</subject><subject>Fluorouracil</subject><subject>Homeostasis</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Intracellular</subject><subject>Isocitrate dehydrogenase</subject><subject>Isocitrate Dehydrogenase - metabolism</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metastases</subject><subject>Mutation</subject><subject>Oncology</subject><subject>Oxidation-Reduction</subject><subject>SIRT1 protein</subject><subject>Tricarboxylic acid cycle</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><subject>Tumor Necrosis Factor-alpha - pharmacology</subject><subject>Tumor necrosis factor-α</subject><subject>Tumors</subject><subject>Ubiquitination</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kc1u1TAQhS0EopfCC7BAltiwCfg3tpeoUFqpgk1ZW449aVzdxBfbqchj8SI8E4ZbQGLBYuSx5pszozkIPafkNSVcvymCcq07wlgLyXS3PUA7KlTfSWnEQ7QjRpLOMM5O0JNSbgkhyhD2GJ3wnktGjNqh5frj-fdvXVzC6iHgy3cXFE_bAbLzULe9qzEtOMMhp5vs5tLSkL7iKc2QSnUlFuyWgFt5ThUKrhNgP0H7TE3iAGuNHhdYSqzxLtbtKXo0un2BZ_fvKfp8_v767KK7-vTh8uztVee5krUDNRhlRnBCySBHPRBBhiE4yokH6R3TA2cjZ4EpqnojlAkOehU8EcGPgvBT9Oqo2zb7skKpdo7Fw37vFkhrsUxxSXuthW7oy3_Q27TmpW3XqL7dWRhGG8WOlM-plAyjPeQ4u7xZSuxPN-zRDdvcsL_csFtrenEvvQ4zhD8tv8_fAH4ESistN5D_zv6P7A8cMZjK</recordid><startdate>20230103</startdate><enddate>20230103</enddate><creator>Yang, Hao</creator><creator>Zhao, Xiaoping</creator><creator>Liu, Jianjun</creator><creator>Jin, Mingming</creator><creator>Liu, Xiyu</creator><creator>Yan, Jun</creator><creator>Yao, Xufeng</creator><creator>Mao, Xinyi</creator><creator>Li, Nan</creator><creator>Liang, Beibei</creator><creator>Xie, Wei</creator><creator>Zhang, Kunchi</creator><creator>Zhao, Jian</creator><creator>Liu, Liu</creator><creator>Huang, Gang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8983-4137</orcidid><orcidid>https://orcid.org/0000-0002-5786-7110</orcidid><orcidid>https://orcid.org/0000-0001-8131-8886</orcidid><orcidid>https://orcid.org/0000-0002-3781-7271</orcidid></search><sort><creationdate>20230103</creationdate><title>TNFα-induced IDH1 hyperacetylation reprograms redox homeostasis and promotes the chemotherapeutic sensitivity</title><author>Yang, Hao ; Zhao, Xiaoping ; Liu, Jianjun ; Jin, Mingming ; Liu, Xiyu ; Yan, Jun ; Yao, Xufeng ; Mao, Xinyi ; Li, Nan ; Liang, Beibei ; Xie, Wei ; Zhang, Kunchi ; Zhao, Jian ; Liu, Liu ; Huang, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-e7b979fea475d5f8b040bbda130ce5ca28b32f32d271769479dae67dc04dcf403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>14/19</topic><topic>14/5</topic><topic>38/1</topic><topic>42/109</topic><topic>42/89</topic><topic>59/78</topic><topic>631/67/2327</topic><topic>631/80/458</topic><topic>64/60</topic><topic>82/51</topic><topic>82/80</topic><topic>96/31</topic><topic>Acetylation</topic><topic>Apoptosis</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Chemotherapy</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Deacetylation</topic><topic>Drug resistance</topic><topic>Fluorouracil</topic><topic>Homeostasis</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Intracellular</topic><topic>Isocitrate dehydrogenase</topic><topic>Isocitrate Dehydrogenase - metabolism</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metastases</topic><topic>Mutation</topic><topic>Oncology</topic><topic>Oxidation-Reduction</topic><topic>SIRT1 protein</topic><topic>Tricarboxylic acid cycle</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><topic>Tumor Necrosis Factor-alpha - pharmacology</topic><topic>Tumor necrosis factor-α</topic><topic>Tumors</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Zhao, Xiaoping</creatorcontrib><creatorcontrib>Liu, Jianjun</creatorcontrib><creatorcontrib>Jin, Mingming</creatorcontrib><creatorcontrib>Liu, Xiyu</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Yao, Xufeng</creatorcontrib><creatorcontrib>Mao, Xinyi</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><creatorcontrib>Liang, Beibei</creatorcontrib><creatorcontrib>Xie, Wei</creatorcontrib><creatorcontrib>Zhang, Kunchi</creatorcontrib><creatorcontrib>Zhao, Jian</creatorcontrib><creatorcontrib>Liu, Liu</creatorcontrib><creatorcontrib>Huang, Gang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Hao</au><au>Zhao, Xiaoping</au><au>Liu, Jianjun</au><au>Jin, Mingming</au><au>Liu, Xiyu</au><au>Yan, Jun</au><au>Yao, Xufeng</au><au>Mao, Xinyi</au><au>Li, Nan</au><au>Liang, Beibei</au><au>Xie, Wei</au><au>Zhang, Kunchi</au><au>Zhao, Jian</au><au>Liu, Liu</au><au>Huang, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TNFα-induced IDH1 hyperacetylation reprograms redox homeostasis and promotes the chemotherapeutic sensitivity</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2023-01-03</date><risdate>2023</risdate><volume>42</volume><issue>1</issue><spage>35</spage><epage>48</epage><pages>35-48</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>The heterogeneity and drug resistance of colorectal cancer (CRC) often lead to treatment failure. Isocitrate dehydrogenase 1 (IDH1), a rate-limiting enzyme in the tricarboxylic acid cycle, regulates the intracellular redox environment and mediates tumor cell resistance to chemotherapeutic drugs. The aim of this study was to elucidate the mechanism underlying the involvement of IDH1 acetylation in the development of CRC drug resistance under induction of TNFα. We found TNFα disrupted the interaction between SIRT1 and IDH1 and increased the level of acetylation at K115 of IDH1. Hyperacetylation of K115 was accompanied by protein ubiquitination, which increased its susceptibility to degradation compared to IDH1 K115R. TNFα-mediated hyperacetylation of K115 sensitized the CRC cells to 5FU and reduced the NADPH/NADP ratio to that of intracellular ROS. Furthermore, TNFα and 5FU inhibited CRC tumor growth in vivo, while the K115R-expressing tumor tissues developed 5FU resistance. In human CRC tissues, K115 acetylation was positively correlated with TNFα infiltration, and K115 hyperacetylation was associated with favorable prognosis compared to chemotherapy-induced deacetylation. Therefore, TNFα-induced hyperacetylation at the K115 site of IDH1 promotes antitumor redox homeostasis in CRC cells, and can be used as a marker to predict the response of CRC patients to chemotherapy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36352097</pmid><doi>10.1038/s41388-022-02528-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8983-4137</orcidid><orcidid>https://orcid.org/0000-0002-5786-7110</orcidid><orcidid>https://orcid.org/0000-0001-8131-8886</orcidid><orcidid>https://orcid.org/0000-0002-3781-7271</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2023-01, Vol.42 (1), p.35-48
issn 0950-9232
1476-5594
language eng
recordid cdi_proquest_miscellaneous_2735168848
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects 14/19
14/5
38/1
42/109
42/89
59/78
631/67/2327
631/80/458
64/60
82/51
82/80
96/31
Acetylation
Apoptosis
Cell Biology
Cell Line, Tumor
Chemotherapy
Colorectal cancer
Colorectal carcinoma
Deacetylation
Drug resistance
Fluorouracil
Homeostasis
Human Genetics
Humans
Internal Medicine
Intracellular
Isocitrate dehydrogenase
Isocitrate Dehydrogenase - metabolism
Medicine
Medicine & Public Health
Metastases
Mutation
Oncology
Oxidation-Reduction
SIRT1 protein
Tricarboxylic acid cycle
Tumor Necrosis Factor-alpha - metabolism
Tumor Necrosis Factor-alpha - pharmacology
Tumor necrosis factor-α
Tumors
Ubiquitination
title TNFα-induced IDH1 hyperacetylation reprograms redox homeostasis and promotes the chemotherapeutic sensitivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A14%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TNF%CE%B1-induced%20IDH1%20hyperacetylation%20reprograms%20redox%20homeostasis%20and%20promotes%20the%20chemotherapeutic%20sensitivity&rft.jtitle=Oncogene&rft.au=Yang,%20Hao&rft.date=2023-01-03&rft.volume=42&rft.issue=1&rft.spage=35&rft.epage=48&rft.pages=35-48&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/s41388-022-02528-y&rft_dat=%3Cproquest_cross%3E2735168848%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760384921&rft_id=info:pmid/36352097&rfr_iscdi=true