Solvated Structure of Hybrid Tetraglyme‐Aqueous Electrolyte Dissolving High‐Concentration LiTFSI‐LiFSI for Dual‐Ion Battery

The solvated structure of a highly concentrated hybrid tetraglyme (G4)‐water electrolyte was studied for an increasing cycle stability and performance of a KS6 used dual‐ion battery. Hybrid solvent of G4 and water with a weight ratio of 2 to 8 was able to dissolve 9LiFSI‐1LiTFSI supporting salts up...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2023-02, Vol.16 (4), p.e202201805-n/a
Hauptverfasser: Yang, Dengyao, Li, Huan, Shen, Xiaofeng, Watanabe, Motonori, Ishihara, Tatsumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page e202201805
container_title ChemSusChem
container_volume 16
creator Yang, Dengyao
Li, Huan
Shen, Xiaofeng
Watanabe, Motonori
Ishihara, Tatsumi
description The solvated structure of a highly concentrated hybrid tetraglyme (G4)‐water electrolyte was studied for an increasing cycle stability and performance of a KS6 used dual‐ion battery. Hybrid solvent of G4 and water with a weight ratio of 2 to 8 was able to dissolve 9LiFSI‐1LiTFSI supporting salts up to 37 mol kg−1 (37 mol kg−1 G2W8). In spite of such high concentration of supporting salts, reasonable charge and discharge performance of dual‐ion battery (discharge capacity of ≈40 mAh g−1 and coulombic efficiency of 90 %) were exhibited over 300 cycles. This was attributed to the decreased hydrogen evolution reaction (HER) potential to −1.05 V vs. Ag/AgCl by addition of G4. From Fourier‐transform infrared, nuclear magnetic resonance, and Raman spectroscopies, G4 molecules were more strongly coordinated to Li+ to form ion pairs of [Li(G4)x(H2O)y]+ complex in hybrid G4‐water electrolyte. Co‐intercalation of bis(trifluoromethanesulfonyl)imide (TFSI−) and bis(fluorosulfonyl)imide (FSI−) into graphitic carbon KS6 cathode was confirmed in hybrid aqueous electrolyte. Salty: Tetraglyme is used to prepare a hybrid G4‐water electrolyte with high‐concentration supporting salts, which devotes to bond water by hydrogen bonding to form [Li(G4)x(H2O)y]+ to suppress hydrogen evolution reaction. This hybrid G4‐water electrolyte is applied in a dual‐ion battery that delivers an improved reversibility and capability of energy storage for a KS6/AC dual‐ion battery.
doi_str_mv 10.1002/cssc.202201805
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2735166308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2735166308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3695-b93a4c5f54f82cbfd05d8602da624a6501c42aba496b6d5c3d9105607e5dda113</originalsourceid><addsrcrecordid>eNqFkctqGzEUhkVpaNK02y6LoJtu7OjumWUyudhgyGIc6G7QSBpXQR4lkqZldoW8QJ6xTxIZJw5kk9URR9_50NEPwDeMphghcqJiVFOCCEG4QPwDOMKFYBMu2K-P-zPFh-BzjLcICVQK8QkcUkE5I7g4Ag-1d39kMhrWKQwqDcFA38H52Aar4cqkINdu3Jj__x5P7wfjhwgvnFEpeDcmA89tjFlg-zWc2_XvTFW-V6bPY8n6Hi7t6rJe5PbS5go7H-D5IF1uLPLtmUzJhPELOOiki-brcz0GN5cXq2o-WV5fLarT5URRUfJJW1LJFO846wqi2k4jrguBiJaCMCk4wooR2UpWilZorqguMeICzQzXWmJMj8HPnfcu-LxLTM3GRmWck_12sYbMKMdCUFRk9Mcb9NYPoc-vy9SsyF9XUJap6Y5SwccYTNfcBbuRYWwwarbxNNt4mn08eeD7s3ZoN0bv8Zc8MlDugL_WmfEdXVPVdfUqfwJqu6EP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778218834</pqid></control><display><type>article</type><title>Solvated Structure of Hybrid Tetraglyme‐Aqueous Electrolyte Dissolving High‐Concentration LiTFSI‐LiFSI for Dual‐Ion Battery</title><source>Access via Wiley Online Library</source><creator>Yang, Dengyao ; Li, Huan ; Shen, Xiaofeng ; Watanabe, Motonori ; Ishihara, Tatsumi</creator><creatorcontrib>Yang, Dengyao ; Li, Huan ; Shen, Xiaofeng ; Watanabe, Motonori ; Ishihara, Tatsumi</creatorcontrib><description>The solvated structure of a highly concentrated hybrid tetraglyme (G4)‐water electrolyte was studied for an increasing cycle stability and performance of a KS6 used dual‐ion battery. Hybrid solvent of G4 and water with a weight ratio of 2 to 8 was able to dissolve 9LiFSI‐1LiTFSI supporting salts up to 37 mol kg−1 (37 mol kg−1 G2W8). In spite of such high concentration of supporting salts, reasonable charge and discharge performance of dual‐ion battery (discharge capacity of ≈40 mAh g−1 and coulombic efficiency of 90 %) were exhibited over 300 cycles. This was attributed to the decreased hydrogen evolution reaction (HER) potential to −1.05 V vs. Ag/AgCl by addition of G4. From Fourier‐transform infrared, nuclear magnetic resonance, and Raman spectroscopies, G4 molecules were more strongly coordinated to Li+ to form ion pairs of [Li(G4)x(H2O)y]+ complex in hybrid G4‐water electrolyte. Co‐intercalation of bis(trifluoromethanesulfonyl)imide (TFSI−) and bis(fluorosulfonyl)imide (FSI−) into graphitic carbon KS6 cathode was confirmed in hybrid aqueous electrolyte. Salty: Tetraglyme is used to prepare a hybrid G4‐water electrolyte with high‐concentration supporting salts, which devotes to bond water by hydrogen bonding to form [Li(G4)x(H2O)y]+ to suppress hydrogen evolution reaction. This hybrid G4‐water electrolyte is applied in a dual‐ion battery that delivers an improved reversibility and capability of energy storage for a KS6/AC dual‐ion battery.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.202201805</identifier><identifier>PMID: 36354218</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aqueous electrolytes ; Discharge ; dual-ion battery ; electrolytes ; energy storage ; hybrid aqueous electrolyte ; Hydrogen evolution reactions ; Ion pairs ; NMR ; Nuclear magnetic resonance ; tetraglyme</subject><ispartof>ChemSusChem, 2023-02, Vol.16 (4), p.e202201805-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3695-b93a4c5f54f82cbfd05d8602da624a6501c42aba496b6d5c3d9105607e5dda113</citedby><cites>FETCH-LOGICAL-c3695-b93a4c5f54f82cbfd05d8602da624a6501c42aba496b6d5c3d9105607e5dda113</cites><orcidid>0000-0002-3417-8857 ; 0000-0002-7434-3773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.202201805$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.202201805$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36354218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Dengyao</creatorcontrib><creatorcontrib>Li, Huan</creatorcontrib><creatorcontrib>Shen, Xiaofeng</creatorcontrib><creatorcontrib>Watanabe, Motonori</creatorcontrib><creatorcontrib>Ishihara, Tatsumi</creatorcontrib><title>Solvated Structure of Hybrid Tetraglyme‐Aqueous Electrolyte Dissolving High‐Concentration LiTFSI‐LiFSI for Dual‐Ion Battery</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>The solvated structure of a highly concentrated hybrid tetraglyme (G4)‐water electrolyte was studied for an increasing cycle stability and performance of a KS6 used dual‐ion battery. Hybrid solvent of G4 and water with a weight ratio of 2 to 8 was able to dissolve 9LiFSI‐1LiTFSI supporting salts up to 37 mol kg−1 (37 mol kg−1 G2W8). In spite of such high concentration of supporting salts, reasonable charge and discharge performance of dual‐ion battery (discharge capacity of ≈40 mAh g−1 and coulombic efficiency of 90 %) were exhibited over 300 cycles. This was attributed to the decreased hydrogen evolution reaction (HER) potential to −1.05 V vs. Ag/AgCl by addition of G4. From Fourier‐transform infrared, nuclear magnetic resonance, and Raman spectroscopies, G4 molecules were more strongly coordinated to Li+ to form ion pairs of [Li(G4)x(H2O)y]+ complex in hybrid G4‐water electrolyte. Co‐intercalation of bis(trifluoromethanesulfonyl)imide (TFSI−) and bis(fluorosulfonyl)imide (FSI−) into graphitic carbon KS6 cathode was confirmed in hybrid aqueous electrolyte. Salty: Tetraglyme is used to prepare a hybrid G4‐water electrolyte with high‐concentration supporting salts, which devotes to bond water by hydrogen bonding to form [Li(G4)x(H2O)y]+ to suppress hydrogen evolution reaction. This hybrid G4‐water electrolyte is applied in a dual‐ion battery that delivers an improved reversibility and capability of energy storage for a KS6/AC dual‐ion battery.</description><subject>Aqueous electrolytes</subject><subject>Discharge</subject><subject>dual-ion battery</subject><subject>electrolytes</subject><subject>energy storage</subject><subject>hybrid aqueous electrolyte</subject><subject>Hydrogen evolution reactions</subject><subject>Ion pairs</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>tetraglyme</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkctqGzEUhkVpaNK02y6LoJtu7OjumWUyudhgyGIc6G7QSBpXQR4lkqZldoW8QJ6xTxIZJw5kk9URR9_50NEPwDeMphghcqJiVFOCCEG4QPwDOMKFYBMu2K-P-zPFh-BzjLcICVQK8QkcUkE5I7g4Ag-1d39kMhrWKQwqDcFA38H52Aar4cqkINdu3Jj__x5P7wfjhwgvnFEpeDcmA89tjFlg-zWc2_XvTFW-V6bPY8n6Hi7t6rJe5PbS5go7H-D5IF1uLPLtmUzJhPELOOiki-brcz0GN5cXq2o-WV5fLarT5URRUfJJW1LJFO846wqi2k4jrguBiJaCMCk4wooR2UpWilZorqguMeICzQzXWmJMj8HPnfcu-LxLTM3GRmWck_12sYbMKMdCUFRk9Mcb9NYPoc-vy9SsyF9XUJap6Y5SwccYTNfcBbuRYWwwarbxNNt4mn08eeD7s3ZoN0bv8Zc8MlDugL_WmfEdXVPVdfUqfwJqu6EP</recordid><startdate>20230220</startdate><enddate>20230220</enddate><creator>Yang, Dengyao</creator><creator>Li, Huan</creator><creator>Shen, Xiaofeng</creator><creator>Watanabe, Motonori</creator><creator>Ishihara, Tatsumi</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3417-8857</orcidid><orcidid>https://orcid.org/0000-0002-7434-3773</orcidid></search><sort><creationdate>20230220</creationdate><title>Solvated Structure of Hybrid Tetraglyme‐Aqueous Electrolyte Dissolving High‐Concentration LiTFSI‐LiFSI for Dual‐Ion Battery</title><author>Yang, Dengyao ; Li, Huan ; Shen, Xiaofeng ; Watanabe, Motonori ; Ishihara, Tatsumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3695-b93a4c5f54f82cbfd05d8602da624a6501c42aba496b6d5c3d9105607e5dda113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aqueous electrolytes</topic><topic>Discharge</topic><topic>dual-ion battery</topic><topic>electrolytes</topic><topic>energy storage</topic><topic>hybrid aqueous electrolyte</topic><topic>Hydrogen evolution reactions</topic><topic>Ion pairs</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>tetraglyme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Dengyao</creatorcontrib><creatorcontrib>Li, Huan</creatorcontrib><creatorcontrib>Shen, Xiaofeng</creatorcontrib><creatorcontrib>Watanabe, Motonori</creatorcontrib><creatorcontrib>Ishihara, Tatsumi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Dengyao</au><au>Li, Huan</au><au>Shen, Xiaofeng</au><au>Watanabe, Motonori</au><au>Ishihara, Tatsumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvated Structure of Hybrid Tetraglyme‐Aqueous Electrolyte Dissolving High‐Concentration LiTFSI‐LiFSI for Dual‐Ion Battery</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2023-02-20</date><risdate>2023</risdate><volume>16</volume><issue>4</issue><spage>e202201805</spage><epage>n/a</epage><pages>e202201805-n/a</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>The solvated structure of a highly concentrated hybrid tetraglyme (G4)‐water electrolyte was studied for an increasing cycle stability and performance of a KS6 used dual‐ion battery. Hybrid solvent of G4 and water with a weight ratio of 2 to 8 was able to dissolve 9LiFSI‐1LiTFSI supporting salts up to 37 mol kg−1 (37 mol kg−1 G2W8). In spite of such high concentration of supporting salts, reasonable charge and discharge performance of dual‐ion battery (discharge capacity of ≈40 mAh g−1 and coulombic efficiency of 90 %) were exhibited over 300 cycles. This was attributed to the decreased hydrogen evolution reaction (HER) potential to −1.05 V vs. Ag/AgCl by addition of G4. From Fourier‐transform infrared, nuclear magnetic resonance, and Raman spectroscopies, G4 molecules were more strongly coordinated to Li+ to form ion pairs of [Li(G4)x(H2O)y]+ complex in hybrid G4‐water electrolyte. Co‐intercalation of bis(trifluoromethanesulfonyl)imide (TFSI−) and bis(fluorosulfonyl)imide (FSI−) into graphitic carbon KS6 cathode was confirmed in hybrid aqueous electrolyte. Salty: Tetraglyme is used to prepare a hybrid G4‐water electrolyte with high‐concentration supporting salts, which devotes to bond water by hydrogen bonding to form [Li(G4)x(H2O)y]+ to suppress hydrogen evolution reaction. This hybrid G4‐water electrolyte is applied in a dual‐ion battery that delivers an improved reversibility and capability of energy storage for a KS6/AC dual‐ion battery.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36354218</pmid><doi>10.1002/cssc.202201805</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3417-8857</orcidid><orcidid>https://orcid.org/0000-0002-7434-3773</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2023-02, Vol.16 (4), p.e202201805-n/a
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_miscellaneous_2735166308
source Access via Wiley Online Library
subjects Aqueous electrolytes
Discharge
dual-ion battery
electrolytes
energy storage
hybrid aqueous electrolyte
Hydrogen evolution reactions
Ion pairs
NMR
Nuclear magnetic resonance
tetraglyme
title Solvated Structure of Hybrid Tetraglyme‐Aqueous Electrolyte Dissolving High‐Concentration LiTFSI‐LiFSI for Dual‐Ion Battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A45%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvated%20Structure%20of%20Hybrid%20Tetraglyme%E2%80%90Aqueous%20Electrolyte%20Dissolving%20High%E2%80%90Concentration%20LiTFSI%E2%80%90LiFSI%20for%20Dual%E2%80%90Ion%20Battery&rft.jtitle=ChemSusChem&rft.au=Yang,%20Dengyao&rft.date=2023-02-20&rft.volume=16&rft.issue=4&rft.spage=e202201805&rft.epage=n/a&rft.pages=e202201805-n/a&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.202201805&rft_dat=%3Cproquest_cross%3E2735166308%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778218834&rft_id=info:pmid/36354218&rfr_iscdi=true