Using Monte-Carlo variance reduction in statistical tolerance synthesis
A statistical tolerance synthesis must analyse many sets of tolerances, each of which has a unique probability distribution. The Monte-Carlo technique that is typically used to evaluate the probability distribution must analyse large numbers of individual cases. The result is a huge number of indivi...
Gespeichert in:
Veröffentlicht in: | Computer aided design 1997, Vol.29 (1), p.63-69 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 69 |
---|---|
container_issue | 1 |
container_start_page | 63 |
container_title | Computer aided design |
container_volume | 29 |
creator | Skowronski, Victor J Turner, Joshua U |
description | A statistical tolerance synthesis must analyse many sets of tolerances, each of which has a unique probability distribution. The Monte-Carlo technique that is typically used to evaluate the probability distribution must analyse large numbers of individual cases. The result is a huge number of individual analyses, which is computationally expensive. This paper examines two Monte-Carlo variance reduction techniques, importance sampling and correlation, and proposes a method for using them in statistical tolerance synthesis. Correlation is used to reduce the error in the tolerance analyses. Importance sampling is used to estimate the sensitivity of an analysis to the tolerances so that a gradient based optimization algorithm can be used. |
doi_str_mv | 10.1016/S0010-4485(96)00050-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27344783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010448596000504</els_id><sourcerecordid>27344318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-2593e0d7bd787f5bc561b08c610aaed629818e6059ca67efaa84e4ce60ccded73</originalsourceid><addsrcrecordid>eNqNkMFKAzEQhoMoWKuPIOxBRA-ryW6SzZ5Eilah4kF7Dml2ViPbTc2khb69aSu96mmY4fvnh4-Qc0ZvGGXy9o1SRnPOlbiq5TWlVKTtgAyYquq8kEocksEeOSYniF8JKlhZD8h4iq7_yF58HyEfmdD5bGWCM72FLECztNH5PnN9htFEh9FZ02XRdxC2CK77-Ano8JQctaZDOPudQzJ9fHgfPeWT1_Hz6H6SWy55zAtRl0CbatZUqmrFzArJZlRZyagx0MiiVkyBpKK2RlbQGqM4cJsu1jbQVOWQXO7-LoL_XgJGPXdooetMD36JuqhKzitV_g8smUqg2IE2eMQArV4ENzdhrRnVG79661dv5Ola6q1fzVPu4rfAYJLSboQ43IcLwQtBi4Td7TBIVlYOgkbrILlrXAAbdePdH0U_LgiPjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27344318</pqid></control><display><type>article</type><title>Using Monte-Carlo variance reduction in statistical tolerance synthesis</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Skowronski, Victor J ; Turner, Joshua U</creator><creatorcontrib>Skowronski, Victor J ; Turner, Joshua U</creatorcontrib><description>A statistical tolerance synthesis must analyse many sets of tolerances, each of which has a unique probability distribution. The Monte-Carlo technique that is typically used to evaluate the probability distribution must analyse large numbers of individual cases. The result is a huge number of individual analyses, which is computationally expensive. This paper examines two Monte-Carlo variance reduction techniques, importance sampling and correlation, and proposes a method for using them in statistical tolerance synthesis. Correlation is used to reduce the error in the tolerance analyses. Importance sampling is used to estimate the sensitivity of an analysis to the tolerances so that a gradient based optimization algorithm can be used.</description><identifier>ISSN: 0010-4485</identifier><identifier>EISSN: 1879-2685</identifier><identifier>DOI: 10.1016/S0010-4485(96)00050-4</identifier><identifier>CODEN: CAIDA5</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; derivative estimation ; Exact sciences and technology ; optimization ; resampling ; sample reuse ; Simulation ; Software ; Theoretical computing</subject><ispartof>Computer aided design, 1997, Vol.29 (1), p.63-69</ispartof><rights>1996</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-2593e0d7bd787f5bc561b08c610aaed629818e6059ca67efaa84e4ce60ccded73</citedby><cites>FETCH-LOGICAL-c464t-2593e0d7bd787f5bc561b08c610aaed629818e6059ca67efaa84e4ce60ccded73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0010-4485(96)00050-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,4022,27922,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2542502$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Skowronski, Victor J</creatorcontrib><creatorcontrib>Turner, Joshua U</creatorcontrib><title>Using Monte-Carlo variance reduction in statistical tolerance synthesis</title><title>Computer aided design</title><description>A statistical tolerance synthesis must analyse many sets of tolerances, each of which has a unique probability distribution. The Monte-Carlo technique that is typically used to evaluate the probability distribution must analyse large numbers of individual cases. The result is a huge number of individual analyses, which is computationally expensive. This paper examines two Monte-Carlo variance reduction techniques, importance sampling and correlation, and proposes a method for using them in statistical tolerance synthesis. Correlation is used to reduce the error in the tolerance analyses. Importance sampling is used to estimate the sensitivity of an analysis to the tolerances so that a gradient based optimization algorithm can be used.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>derivative estimation</subject><subject>Exact sciences and technology</subject><subject>optimization</subject><subject>resampling</subject><subject>sample reuse</subject><subject>Simulation</subject><subject>Software</subject><subject>Theoretical computing</subject><issn>0010-4485</issn><issn>1879-2685</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqNkMFKAzEQhoMoWKuPIOxBRA-ryW6SzZ5Eilah4kF7Dml2ViPbTc2khb69aSu96mmY4fvnh4-Qc0ZvGGXy9o1SRnPOlbiq5TWlVKTtgAyYquq8kEocksEeOSYniF8JKlhZD8h4iq7_yF58HyEfmdD5bGWCM72FLECztNH5PnN9htFEh9FZ02XRdxC2CK77-Ano8JQctaZDOPudQzJ9fHgfPeWT1_Hz6H6SWy55zAtRl0CbatZUqmrFzArJZlRZyagx0MiiVkyBpKK2RlbQGqM4cJsu1jbQVOWQXO7-LoL_XgJGPXdooetMD36JuqhKzitV_g8smUqg2IE2eMQArV4ENzdhrRnVG79661dv5Ola6q1fzVPu4rfAYJLSboQ43IcLwQtBi4Td7TBIVlYOgkbrILlrXAAbdePdH0U_LgiPjw</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Skowronski, Victor J</creator><creator>Turner, Joshua U</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>1997</creationdate><title>Using Monte-Carlo variance reduction in statistical tolerance synthesis</title><author>Skowronski, Victor J ; Turner, Joshua U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-2593e0d7bd787f5bc561b08c610aaed629818e6059ca67efaa84e4ce60ccded73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>derivative estimation</topic><topic>Exact sciences and technology</topic><topic>optimization</topic><topic>resampling</topic><topic>sample reuse</topic><topic>Simulation</topic><topic>Software</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skowronski, Victor J</creatorcontrib><creatorcontrib>Turner, Joshua U</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Computer aided design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skowronski, Victor J</au><au>Turner, Joshua U</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Monte-Carlo variance reduction in statistical tolerance synthesis</atitle><jtitle>Computer aided design</jtitle><date>1997</date><risdate>1997</risdate><volume>29</volume><issue>1</issue><spage>63</spage><epage>69</epage><pages>63-69</pages><issn>0010-4485</issn><eissn>1879-2685</eissn><coden>CAIDA5</coden><abstract>A statistical tolerance synthesis must analyse many sets of tolerances, each of which has a unique probability distribution. The Monte-Carlo technique that is typically used to evaluate the probability distribution must analyse large numbers of individual cases. The result is a huge number of individual analyses, which is computationally expensive. This paper examines two Monte-Carlo variance reduction techniques, importance sampling and correlation, and proposes a method for using them in statistical tolerance synthesis. Correlation is used to reduce the error in the tolerance analyses. Importance sampling is used to estimate the sensitivity of an analysis to the tolerances so that a gradient based optimization algorithm can be used.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0010-4485(96)00050-4</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4485 |
ispartof | Computer aided design, 1997, Vol.29 (1), p.63-69 |
issn | 0010-4485 1879-2685 |
language | eng |
recordid | cdi_proquest_miscellaneous_27344783 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Computer science control theory systems derivative estimation Exact sciences and technology optimization resampling sample reuse Simulation Software Theoretical computing |
title | Using Monte-Carlo variance reduction in statistical tolerance synthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Monte-Carlo%20variance%20reduction%20in%20statistical%20tolerance%20synthesis&rft.jtitle=Computer%20aided%20design&rft.au=Skowronski,%20Victor%20J&rft.date=1997&rft.volume=29&rft.issue=1&rft.spage=63&rft.epage=69&rft.pages=63-69&rft.issn=0010-4485&rft.eissn=1879-2685&rft.coden=CAIDA5&rft_id=info:doi/10.1016/S0010-4485(96)00050-4&rft_dat=%3Cproquest_cross%3E27344318%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27344318&rft_id=info:pmid/&rft_els_id=S0010448596000504&rfr_iscdi=true |