Using Monte-Carlo variance reduction in statistical tolerance synthesis

A statistical tolerance synthesis must analyse many sets of tolerances, each of which has a unique probability distribution. The Monte-Carlo technique that is typically used to evaluate the probability distribution must analyse large numbers of individual cases. The result is a huge number of indivi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer aided design 1997, Vol.29 (1), p.63-69
Hauptverfasser: Skowronski, Victor J, Turner, Joshua U
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69
container_issue 1
container_start_page 63
container_title Computer aided design
container_volume 29
creator Skowronski, Victor J
Turner, Joshua U
description A statistical tolerance synthesis must analyse many sets of tolerances, each of which has a unique probability distribution. The Monte-Carlo technique that is typically used to evaluate the probability distribution must analyse large numbers of individual cases. The result is a huge number of individual analyses, which is computationally expensive. This paper examines two Monte-Carlo variance reduction techniques, importance sampling and correlation, and proposes a method for using them in statistical tolerance synthesis. Correlation is used to reduce the error in the tolerance analyses. Importance sampling is used to estimate the sensitivity of an analysis to the tolerances so that a gradient based optimization algorithm can be used.
doi_str_mv 10.1016/S0010-4485(96)00050-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27344783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010448596000504</els_id><sourcerecordid>27344318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-2593e0d7bd787f5bc561b08c610aaed629818e6059ca67efaa84e4ce60ccded73</originalsourceid><addsrcrecordid>eNqNkMFKAzEQhoMoWKuPIOxBRA-ryW6SzZ5Eilah4kF7Dml2ViPbTc2khb69aSu96mmY4fvnh4-Qc0ZvGGXy9o1SRnPOlbiq5TWlVKTtgAyYquq8kEocksEeOSYniF8JKlhZD8h4iq7_yF58HyEfmdD5bGWCM72FLECztNH5PnN9htFEh9FZ02XRdxC2CK77-Ano8JQctaZDOPudQzJ9fHgfPeWT1_Hz6H6SWy55zAtRl0CbatZUqmrFzArJZlRZyagx0MiiVkyBpKK2RlbQGqM4cJsu1jbQVOWQXO7-LoL_XgJGPXdooetMD36JuqhKzitV_g8smUqg2IE2eMQArV4ENzdhrRnVG79661dv5Ola6q1fzVPu4rfAYJLSboQ43IcLwQtBi4Td7TBIVlYOgkbrILlrXAAbdePdH0U_LgiPjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27344318</pqid></control><display><type>article</type><title>Using Monte-Carlo variance reduction in statistical tolerance synthesis</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Skowronski, Victor J ; Turner, Joshua U</creator><creatorcontrib>Skowronski, Victor J ; Turner, Joshua U</creatorcontrib><description>A statistical tolerance synthesis must analyse many sets of tolerances, each of which has a unique probability distribution. The Monte-Carlo technique that is typically used to evaluate the probability distribution must analyse large numbers of individual cases. The result is a huge number of individual analyses, which is computationally expensive. This paper examines two Monte-Carlo variance reduction techniques, importance sampling and correlation, and proposes a method for using them in statistical tolerance synthesis. Correlation is used to reduce the error in the tolerance analyses. Importance sampling is used to estimate the sensitivity of an analysis to the tolerances so that a gradient based optimization algorithm can be used.</description><identifier>ISSN: 0010-4485</identifier><identifier>EISSN: 1879-2685</identifier><identifier>DOI: 10.1016/S0010-4485(96)00050-4</identifier><identifier>CODEN: CAIDA5</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; derivative estimation ; Exact sciences and technology ; optimization ; resampling ; sample reuse ; Simulation ; Software ; Theoretical computing</subject><ispartof>Computer aided design, 1997, Vol.29 (1), p.63-69</ispartof><rights>1996</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-2593e0d7bd787f5bc561b08c610aaed629818e6059ca67efaa84e4ce60ccded73</citedby><cites>FETCH-LOGICAL-c464t-2593e0d7bd787f5bc561b08c610aaed629818e6059ca67efaa84e4ce60ccded73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0010-4485(96)00050-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,4022,27922,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2542502$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Skowronski, Victor J</creatorcontrib><creatorcontrib>Turner, Joshua U</creatorcontrib><title>Using Monte-Carlo variance reduction in statistical tolerance synthesis</title><title>Computer aided design</title><description>A statistical tolerance synthesis must analyse many sets of tolerances, each of which has a unique probability distribution. The Monte-Carlo technique that is typically used to evaluate the probability distribution must analyse large numbers of individual cases. The result is a huge number of individual analyses, which is computationally expensive. This paper examines two Monte-Carlo variance reduction techniques, importance sampling and correlation, and proposes a method for using them in statistical tolerance synthesis. Correlation is used to reduce the error in the tolerance analyses. Importance sampling is used to estimate the sensitivity of an analysis to the tolerances so that a gradient based optimization algorithm can be used.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>derivative estimation</subject><subject>Exact sciences and technology</subject><subject>optimization</subject><subject>resampling</subject><subject>sample reuse</subject><subject>Simulation</subject><subject>Software</subject><subject>Theoretical computing</subject><issn>0010-4485</issn><issn>1879-2685</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqNkMFKAzEQhoMoWKuPIOxBRA-ryW6SzZ5Eilah4kF7Dml2ViPbTc2khb69aSu96mmY4fvnh4-Qc0ZvGGXy9o1SRnPOlbiq5TWlVKTtgAyYquq8kEocksEeOSYniF8JKlhZD8h4iq7_yF58HyEfmdD5bGWCM72FLECztNH5PnN9htFEh9FZ02XRdxC2CK77-Ano8JQctaZDOPudQzJ9fHgfPeWT1_Hz6H6SWy55zAtRl0CbatZUqmrFzArJZlRZyagx0MiiVkyBpKK2RlbQGqM4cJsu1jbQVOWQXO7-LoL_XgJGPXdooetMD36JuqhKzitV_g8smUqg2IE2eMQArV4ENzdhrRnVG79661dv5Ola6q1fzVPu4rfAYJLSboQ43IcLwQtBi4Td7TBIVlYOgkbrILlrXAAbdePdH0U_LgiPjw</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Skowronski, Victor J</creator><creator>Turner, Joshua U</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>1997</creationdate><title>Using Monte-Carlo variance reduction in statistical tolerance synthesis</title><author>Skowronski, Victor J ; Turner, Joshua U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-2593e0d7bd787f5bc561b08c610aaed629818e6059ca67efaa84e4ce60ccded73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>derivative estimation</topic><topic>Exact sciences and technology</topic><topic>optimization</topic><topic>resampling</topic><topic>sample reuse</topic><topic>Simulation</topic><topic>Software</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skowronski, Victor J</creatorcontrib><creatorcontrib>Turner, Joshua U</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Computer aided design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skowronski, Victor J</au><au>Turner, Joshua U</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Monte-Carlo variance reduction in statistical tolerance synthesis</atitle><jtitle>Computer aided design</jtitle><date>1997</date><risdate>1997</risdate><volume>29</volume><issue>1</issue><spage>63</spage><epage>69</epage><pages>63-69</pages><issn>0010-4485</issn><eissn>1879-2685</eissn><coden>CAIDA5</coden><abstract>A statistical tolerance synthesis must analyse many sets of tolerances, each of which has a unique probability distribution. The Monte-Carlo technique that is typically used to evaluate the probability distribution must analyse large numbers of individual cases. The result is a huge number of individual analyses, which is computationally expensive. This paper examines two Monte-Carlo variance reduction techniques, importance sampling and correlation, and proposes a method for using them in statistical tolerance synthesis. Correlation is used to reduce the error in the tolerance analyses. Importance sampling is used to estimate the sensitivity of an analysis to the tolerances so that a gradient based optimization algorithm can be used.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0010-4485(96)00050-4</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4485
ispartof Computer aided design, 1997, Vol.29 (1), p.63-69
issn 0010-4485
1879-2685
language eng
recordid cdi_proquest_miscellaneous_27344783
source ScienceDirect Journals (5 years ago - present)
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
derivative estimation
Exact sciences and technology
optimization
resampling
sample reuse
Simulation
Software
Theoretical computing
title Using Monte-Carlo variance reduction in statistical tolerance synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Monte-Carlo%20variance%20reduction%20in%20statistical%20tolerance%20synthesis&rft.jtitle=Computer%20aided%20design&rft.au=Skowronski,%20Victor%20J&rft.date=1997&rft.volume=29&rft.issue=1&rft.spage=63&rft.epage=69&rft.pages=63-69&rft.issn=0010-4485&rft.eissn=1879-2685&rft.coden=CAIDA5&rft_id=info:doi/10.1016/S0010-4485(96)00050-4&rft_dat=%3Cproquest_cross%3E27344318%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27344318&rft_id=info:pmid/&rft_els_id=S0010448596000504&rfr_iscdi=true