MILCDock: Machine Learning Enhanced Consensus Docking for Virtual Screening in Drug Discovery

Molecular docking tools are regularly used to computationally identify new molecules in virtual screening for drug discovery. However, docking tools suffer from inaccurate scoring functions with widely varying performance on different proteins. To enable more accurate ranking of active over inactive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2022-11, Vol.62 (22), p.5342-5350
Hauptverfasser: Morris, Connor J., Stern, Jacob A., Stark, Brenden, Christopherson, Max, Della Corte, Dennis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5350
container_issue 22
container_start_page 5342
container_title Journal of chemical information and modeling
container_volume 62
creator Morris, Connor J.
Stern, Jacob A.
Stark, Brenden
Christopherson, Max
Della Corte, Dennis
description Molecular docking tools are regularly used to computationally identify new molecules in virtual screening for drug discovery. However, docking tools suffer from inaccurate scoring functions with widely varying performance on different proteins. To enable more accurate ranking of active over inactive ligands in virtual screening, we created a machine learning consensus docking tool, MILCDock, that uses predictions from five traditional molecular docking tools to predict the probability a ligand binds to a protein. MILCDock was trained and tested on data from both the DUD-E and LIT-PCBA docking datasets and shows improved performance over traditional molecular docking tools and other consensus docking methods on the DUD-E dataset. LIT-PCBA targets proved to be difficult for all methods tested. We also find that DUD-E data, although biased, can be effective in training machine learning tools if care is taken to avoid DUD-E’s biases during training.
doi_str_mv 10.1021/acs.jcim.2c00705
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2733200498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2745046638</sourcerecordid><originalsourceid>FETCH-LOGICAL-a341t-fb72468f9579eceb32b55309dba33d512dcd74e18f0115c4bb011ca9a2101aea3</originalsourceid><addsrcrecordid>eNp1kLtPwzAYxC0EEqWwM1piYSDFz6RmQ2mBSqkYeIgFWY7jtCmpXewGqf89SR8LEtN90ve70-kAuMRogBHBt0qHwUJXywHRCCWIH4Ee5kxEIkYfx4ebi_gUnIWwQIhSEZMe-JxOsnTk9NcdnCo9r6yBmVHeVnYGx3aurDYFTJ0NxoYmwI7sXqXz8L3y60bV8EV7Y7aGysKRb2ZwVAXtfozfnIOTUtXBXOy1D94exq_pU5Q9P07S-yxSlOF1VOYJYfGwFDwRRpuckpxzikSRK0oLjkmhi4QZPCwRxlyzPG9VK6EIRlgZRfvgepe78u67MWEtl20FU9fKGtcESRJKCUJMDFv06g-6cI23bbuWYhyxOKYdhXaU9i4Eb0q58tVS-Y3ESHZ7y3Zv2e0t93u3lpudZfs5ZP6L_wLX9oMj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2745046638</pqid></control><display><type>article</type><title>MILCDock: Machine Learning Enhanced Consensus Docking for Virtual Screening in Drug Discovery</title><source>ACS Publications</source><creator>Morris, Connor J. ; Stern, Jacob A. ; Stark, Brenden ; Christopherson, Max ; Della Corte, Dennis</creator><creatorcontrib>Morris, Connor J. ; Stern, Jacob A. ; Stark, Brenden ; Christopherson, Max ; Della Corte, Dennis</creatorcontrib><description>Molecular docking tools are regularly used to computationally identify new molecules in virtual screening for drug discovery. However, docking tools suffer from inaccurate scoring functions with widely varying performance on different proteins. To enable more accurate ranking of active over inactive ligands in virtual screening, we created a machine learning consensus docking tool, MILCDock, that uses predictions from five traditional molecular docking tools to predict the probability a ligand binds to a protein. MILCDock was trained and tested on data from both the DUD-E and LIT-PCBA docking datasets and shows improved performance over traditional molecular docking tools and other consensus docking methods on the DUD-E dataset. LIT-PCBA targets proved to be difficult for all methods tested. We also find that DUD-E data, although biased, can be effective in training machine learning tools if care is taken to avoid DUD-E’s biases during training.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.2c00705</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Datasets ; Ligands ; Machine learning ; Machine Learning and Deep Learning ; Molecular docking ; Proteins ; Screening ; Training</subject><ispartof>Journal of chemical information and modeling, 2022-11, Vol.62 (22), p.5342-5350</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 28, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a341t-fb72468f9579eceb32b55309dba33d512dcd74e18f0115c4bb011ca9a2101aea3</citedby><cites>FETCH-LOGICAL-a341t-fb72468f9579eceb32b55309dba33d512dcd74e18f0115c4bb011ca9a2101aea3</cites><orcidid>0000-0002-8884-9724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.2c00705$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.2c00705$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Morris, Connor J.</creatorcontrib><creatorcontrib>Stern, Jacob A.</creatorcontrib><creatorcontrib>Stark, Brenden</creatorcontrib><creatorcontrib>Christopherson, Max</creatorcontrib><creatorcontrib>Della Corte, Dennis</creatorcontrib><title>MILCDock: Machine Learning Enhanced Consensus Docking for Virtual Screening in Drug Discovery</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Molecular docking tools are regularly used to computationally identify new molecules in virtual screening for drug discovery. However, docking tools suffer from inaccurate scoring functions with widely varying performance on different proteins. To enable more accurate ranking of active over inactive ligands in virtual screening, we created a machine learning consensus docking tool, MILCDock, that uses predictions from five traditional molecular docking tools to predict the probability a ligand binds to a protein. MILCDock was trained and tested on data from both the DUD-E and LIT-PCBA docking datasets and shows improved performance over traditional molecular docking tools and other consensus docking methods on the DUD-E dataset. LIT-PCBA targets proved to be difficult for all methods tested. We also find that DUD-E data, although biased, can be effective in training machine learning tools if care is taken to avoid DUD-E’s biases during training.</description><subject>Datasets</subject><subject>Ligands</subject><subject>Machine learning</subject><subject>Machine Learning and Deep Learning</subject><subject>Molecular docking</subject><subject>Proteins</subject><subject>Screening</subject><subject>Training</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kLtPwzAYxC0EEqWwM1piYSDFz6RmQ2mBSqkYeIgFWY7jtCmpXewGqf89SR8LEtN90ve70-kAuMRogBHBt0qHwUJXywHRCCWIH4Ee5kxEIkYfx4ebi_gUnIWwQIhSEZMe-JxOsnTk9NcdnCo9r6yBmVHeVnYGx3aurDYFTJ0NxoYmwI7sXqXz8L3y60bV8EV7Y7aGysKRb2ZwVAXtfozfnIOTUtXBXOy1D94exq_pU5Q9P07S-yxSlOF1VOYJYfGwFDwRRpuckpxzikSRK0oLjkmhi4QZPCwRxlyzPG9VK6EIRlgZRfvgepe78u67MWEtl20FU9fKGtcESRJKCUJMDFv06g-6cI23bbuWYhyxOKYdhXaU9i4Eb0q58tVS-Y3ESHZ7y3Zv2e0t93u3lpudZfs5ZP6L_wLX9oMj</recordid><startdate>20221128</startdate><enddate>20221128</enddate><creator>Morris, Connor J.</creator><creator>Stern, Jacob A.</creator><creator>Stark, Brenden</creator><creator>Christopherson, Max</creator><creator>Della Corte, Dennis</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8884-9724</orcidid></search><sort><creationdate>20221128</creationdate><title>MILCDock: Machine Learning Enhanced Consensus Docking for Virtual Screening in Drug Discovery</title><author>Morris, Connor J. ; Stern, Jacob A. ; Stark, Brenden ; Christopherson, Max ; Della Corte, Dennis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a341t-fb72468f9579eceb32b55309dba33d512dcd74e18f0115c4bb011ca9a2101aea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Datasets</topic><topic>Ligands</topic><topic>Machine learning</topic><topic>Machine Learning and Deep Learning</topic><topic>Molecular docking</topic><topic>Proteins</topic><topic>Screening</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, Connor J.</creatorcontrib><creatorcontrib>Stern, Jacob A.</creatorcontrib><creatorcontrib>Stark, Brenden</creatorcontrib><creatorcontrib>Christopherson, Max</creatorcontrib><creatorcontrib>Della Corte, Dennis</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, Connor J.</au><au>Stern, Jacob A.</au><au>Stark, Brenden</au><au>Christopherson, Max</au><au>Della Corte, Dennis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MILCDock: Machine Learning Enhanced Consensus Docking for Virtual Screening in Drug Discovery</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2022-11-28</date><risdate>2022</risdate><volume>62</volume><issue>22</issue><spage>5342</spage><epage>5350</epage><pages>5342-5350</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Molecular docking tools are regularly used to computationally identify new molecules in virtual screening for drug discovery. However, docking tools suffer from inaccurate scoring functions with widely varying performance on different proteins. To enable more accurate ranking of active over inactive ligands in virtual screening, we created a machine learning consensus docking tool, MILCDock, that uses predictions from five traditional molecular docking tools to predict the probability a ligand binds to a protein. MILCDock was trained and tested on data from both the DUD-E and LIT-PCBA docking datasets and shows improved performance over traditional molecular docking tools and other consensus docking methods on the DUD-E dataset. LIT-PCBA targets proved to be difficult for all methods tested. We also find that DUD-E data, although biased, can be effective in training machine learning tools if care is taken to avoid DUD-E’s biases during training.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jcim.2c00705</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8884-9724</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2022-11, Vol.62 (22), p.5342-5350
issn 1549-9596
1549-960X
language eng
recordid cdi_proquest_miscellaneous_2733200498
source ACS Publications
subjects Datasets
Ligands
Machine learning
Machine Learning and Deep Learning
Molecular docking
Proteins
Screening
Training
title MILCDock: Machine Learning Enhanced Consensus Docking for Virtual Screening in Drug Discovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A57%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MILCDock:%20Machine%20Learning%20Enhanced%20Consensus%20Docking%20for%20Virtual%20Screening%20in%20Drug%20Discovery&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Morris,%20Connor%20J.&rft.date=2022-11-28&rft.volume=62&rft.issue=22&rft.spage=5342&rft.epage=5350&rft.pages=5342-5350&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.2c00705&rft_dat=%3Cproquest_cross%3E2745046638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2745046638&rft_id=info:pmid/&rfr_iscdi=true