MILCDock: Machine Learning Enhanced Consensus Docking for Virtual Screening in Drug Discovery
Molecular docking tools are regularly used to computationally identify new molecules in virtual screening for drug discovery. However, docking tools suffer from inaccurate scoring functions with widely varying performance on different proteins. To enable more accurate ranking of active over inactive...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2022-11, Vol.62 (22), p.5342-5350 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5350 |
---|---|
container_issue | 22 |
container_start_page | 5342 |
container_title | Journal of chemical information and modeling |
container_volume | 62 |
creator | Morris, Connor J. Stern, Jacob A. Stark, Brenden Christopherson, Max Della Corte, Dennis |
description | Molecular docking tools are regularly used to computationally identify new molecules in virtual screening for drug discovery. However, docking tools suffer from inaccurate scoring functions with widely varying performance on different proteins. To enable more accurate ranking of active over inactive ligands in virtual screening, we created a machine learning consensus docking tool, MILCDock, that uses predictions from five traditional molecular docking tools to predict the probability a ligand binds to a protein. MILCDock was trained and tested on data from both the DUD-E and LIT-PCBA docking datasets and shows improved performance over traditional molecular docking tools and other consensus docking methods on the DUD-E dataset. LIT-PCBA targets proved to be difficult for all methods tested. We also find that DUD-E data, although biased, can be effective in training machine learning tools if care is taken to avoid DUD-E’s biases during training. |
doi_str_mv | 10.1021/acs.jcim.2c00705 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2733200498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2745046638</sourcerecordid><originalsourceid>FETCH-LOGICAL-a341t-fb72468f9579eceb32b55309dba33d512dcd74e18f0115c4bb011ca9a2101aea3</originalsourceid><addsrcrecordid>eNp1kLtPwzAYxC0EEqWwM1piYSDFz6RmQ2mBSqkYeIgFWY7jtCmpXewGqf89SR8LEtN90ve70-kAuMRogBHBt0qHwUJXywHRCCWIH4Ee5kxEIkYfx4ebi_gUnIWwQIhSEZMe-JxOsnTk9NcdnCo9r6yBmVHeVnYGx3aurDYFTJ0NxoYmwI7sXqXz8L3y60bV8EV7Y7aGysKRb2ZwVAXtfozfnIOTUtXBXOy1D94exq_pU5Q9P07S-yxSlOF1VOYJYfGwFDwRRpuckpxzikSRK0oLjkmhi4QZPCwRxlyzPG9VK6EIRlgZRfvgepe78u67MWEtl20FU9fKGtcESRJKCUJMDFv06g-6cI23bbuWYhyxOKYdhXaU9i4Eb0q58tVS-Y3ESHZ7y3Zv2e0t93u3lpudZfs5ZP6L_wLX9oMj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2745046638</pqid></control><display><type>article</type><title>MILCDock: Machine Learning Enhanced Consensus Docking for Virtual Screening in Drug Discovery</title><source>ACS Publications</source><creator>Morris, Connor J. ; Stern, Jacob A. ; Stark, Brenden ; Christopherson, Max ; Della Corte, Dennis</creator><creatorcontrib>Morris, Connor J. ; Stern, Jacob A. ; Stark, Brenden ; Christopherson, Max ; Della Corte, Dennis</creatorcontrib><description>Molecular docking tools are regularly used to computationally identify new molecules in virtual screening for drug discovery. However, docking tools suffer from inaccurate scoring functions with widely varying performance on different proteins. To enable more accurate ranking of active over inactive ligands in virtual screening, we created a machine learning consensus docking tool, MILCDock, that uses predictions from five traditional molecular docking tools to predict the probability a ligand binds to a protein. MILCDock was trained and tested on data from both the DUD-E and LIT-PCBA docking datasets and shows improved performance over traditional molecular docking tools and other consensus docking methods on the DUD-E dataset. LIT-PCBA targets proved to be difficult for all methods tested. We also find that DUD-E data, although biased, can be effective in training machine learning tools if care is taken to avoid DUD-E’s biases during training.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.2c00705</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Datasets ; Ligands ; Machine learning ; Machine Learning and Deep Learning ; Molecular docking ; Proteins ; Screening ; Training</subject><ispartof>Journal of chemical information and modeling, 2022-11, Vol.62 (22), p.5342-5350</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 28, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a341t-fb72468f9579eceb32b55309dba33d512dcd74e18f0115c4bb011ca9a2101aea3</citedby><cites>FETCH-LOGICAL-a341t-fb72468f9579eceb32b55309dba33d512dcd74e18f0115c4bb011ca9a2101aea3</cites><orcidid>0000-0002-8884-9724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.2c00705$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.2c00705$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Morris, Connor J.</creatorcontrib><creatorcontrib>Stern, Jacob A.</creatorcontrib><creatorcontrib>Stark, Brenden</creatorcontrib><creatorcontrib>Christopherson, Max</creatorcontrib><creatorcontrib>Della Corte, Dennis</creatorcontrib><title>MILCDock: Machine Learning Enhanced Consensus Docking for Virtual Screening in Drug Discovery</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Molecular docking tools are regularly used to computationally identify new molecules in virtual screening for drug discovery. However, docking tools suffer from inaccurate scoring functions with widely varying performance on different proteins. To enable more accurate ranking of active over inactive ligands in virtual screening, we created a machine learning consensus docking tool, MILCDock, that uses predictions from five traditional molecular docking tools to predict the probability a ligand binds to a protein. MILCDock was trained and tested on data from both the DUD-E and LIT-PCBA docking datasets and shows improved performance over traditional molecular docking tools and other consensus docking methods on the DUD-E dataset. LIT-PCBA targets proved to be difficult for all methods tested. We also find that DUD-E data, although biased, can be effective in training machine learning tools if care is taken to avoid DUD-E’s biases during training.</description><subject>Datasets</subject><subject>Ligands</subject><subject>Machine learning</subject><subject>Machine Learning and Deep Learning</subject><subject>Molecular docking</subject><subject>Proteins</subject><subject>Screening</subject><subject>Training</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kLtPwzAYxC0EEqWwM1piYSDFz6RmQ2mBSqkYeIgFWY7jtCmpXewGqf89SR8LEtN90ve70-kAuMRogBHBt0qHwUJXywHRCCWIH4Ee5kxEIkYfx4ebi_gUnIWwQIhSEZMe-JxOsnTk9NcdnCo9r6yBmVHeVnYGx3aurDYFTJ0NxoYmwI7sXqXz8L3y60bV8EV7Y7aGysKRb2ZwVAXtfozfnIOTUtXBXOy1D94exq_pU5Q9P07S-yxSlOF1VOYJYfGwFDwRRpuckpxzikSRK0oLjkmhi4QZPCwRxlyzPG9VK6EIRlgZRfvgepe78u67MWEtl20FU9fKGtcESRJKCUJMDFv06g-6cI23bbuWYhyxOKYdhXaU9i4Eb0q58tVS-Y3ESHZ7y3Zv2e0t93u3lpudZfs5ZP6L_wLX9oMj</recordid><startdate>20221128</startdate><enddate>20221128</enddate><creator>Morris, Connor J.</creator><creator>Stern, Jacob A.</creator><creator>Stark, Brenden</creator><creator>Christopherson, Max</creator><creator>Della Corte, Dennis</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8884-9724</orcidid></search><sort><creationdate>20221128</creationdate><title>MILCDock: Machine Learning Enhanced Consensus Docking for Virtual Screening in Drug Discovery</title><author>Morris, Connor J. ; Stern, Jacob A. ; Stark, Brenden ; Christopherson, Max ; Della Corte, Dennis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a341t-fb72468f9579eceb32b55309dba33d512dcd74e18f0115c4bb011ca9a2101aea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Datasets</topic><topic>Ligands</topic><topic>Machine learning</topic><topic>Machine Learning and Deep Learning</topic><topic>Molecular docking</topic><topic>Proteins</topic><topic>Screening</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, Connor J.</creatorcontrib><creatorcontrib>Stern, Jacob A.</creatorcontrib><creatorcontrib>Stark, Brenden</creatorcontrib><creatorcontrib>Christopherson, Max</creatorcontrib><creatorcontrib>Della Corte, Dennis</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, Connor J.</au><au>Stern, Jacob A.</au><au>Stark, Brenden</au><au>Christopherson, Max</au><au>Della Corte, Dennis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MILCDock: Machine Learning Enhanced Consensus Docking for Virtual Screening in Drug Discovery</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2022-11-28</date><risdate>2022</risdate><volume>62</volume><issue>22</issue><spage>5342</spage><epage>5350</epage><pages>5342-5350</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Molecular docking tools are regularly used to computationally identify new molecules in virtual screening for drug discovery. However, docking tools suffer from inaccurate scoring functions with widely varying performance on different proteins. To enable more accurate ranking of active over inactive ligands in virtual screening, we created a machine learning consensus docking tool, MILCDock, that uses predictions from five traditional molecular docking tools to predict the probability a ligand binds to a protein. MILCDock was trained and tested on data from both the DUD-E and LIT-PCBA docking datasets and shows improved performance over traditional molecular docking tools and other consensus docking methods on the DUD-E dataset. LIT-PCBA targets proved to be difficult for all methods tested. We also find that DUD-E data, although biased, can be effective in training machine learning tools if care is taken to avoid DUD-E’s biases during training.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jcim.2c00705</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8884-9724</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2022-11, Vol.62 (22), p.5342-5350 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_2733200498 |
source | ACS Publications |
subjects | Datasets Ligands Machine learning Machine Learning and Deep Learning Molecular docking Proteins Screening Training |
title | MILCDock: Machine Learning Enhanced Consensus Docking for Virtual Screening in Drug Discovery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A57%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MILCDock:%20Machine%20Learning%20Enhanced%20Consensus%20Docking%20for%20Virtual%20Screening%20in%20Drug%20Discovery&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Morris,%20Connor%20J.&rft.date=2022-11-28&rft.volume=62&rft.issue=22&rft.spage=5342&rft.epage=5350&rft.pages=5342-5350&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.2c00705&rft_dat=%3Cproquest_cross%3E2745046638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2745046638&rft_id=info:pmid/&rfr_iscdi=true |