Representing Probabilistic Rules with Networks of Gaussian Basis Functions
There is great interest in understanding the intrinsic knowledge neural networks have acquired during training. Most work in this direction is focussed on the multi-layer perceptron architecture. The topic of this paper is networks of Gaussian basis functions which are used extensively as learning s...
Gespeichert in:
Veröffentlicht in: | Machine learning 1997-05, Vol.27 (2), p.173-200 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 200 |
---|---|
container_issue | 2 |
container_start_page | 173 |
container_title | Machine learning |
container_volume | 27 |
creator | Tresp, Volker Hollatz, Jürgen Ahmad, Subutai |
description | There is great interest in understanding the intrinsic knowledge neural networks have acquired during training. Most work in this direction is focussed on the multi-layer perceptron architecture. The topic of this paper is networks of Gaussian basis functions which are used extensively as learning systems in neural computation. We show that networks of Gaussian basis functions can be generated from simple probabilistic rules. Also, if appropriate learning rules are used, probabilistic rules can be extracted from trained networks. We present methods for the reduction of network complexity with the goal of obtaining concise and meaningful rules. We show how prior knowledge can be refined or supplemented using data by employing either a Bayesian approach, by a weighted combination of knowledge bases, or by generating artificial training data representing the prior knowledge. We validate our approach using a standard statistical data set.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1023/A:1007381408604 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_27325931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2158028001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-a05145cbe95ec98180d8c511abe18ec6df84470b5407d4093f31d2aaab41bdbd3</originalsourceid><addsrcrecordid>eNpdjrFOwzAUAC0EEqUws1oMbIH3Yjt22EpFC6gCVMEc2Y4DLsEpeYn6-1SCiemW0-kYO0e4QsjF9ewGAbQwKMEUIA_YBJUWGahCHbIJGKOyAnN1zE6INgCQF6aYsMd12PaBQhpieucvfeesi22kIXq-HttAfBeHD_4Uhl3XfxLvGr60I1G0id9aisQXY_JD7BKdsqPGthTO_jhlb4u71_l9tnpePsxnq8znSg-ZBYVSeRdKFXxp0EBtvEK0LqAJvqgbI6UGpyToWkIpGoF1bq11El3tajFll7_dbd99j4GG6iuSD21rU-hGqnItclUK3IsX_8RNN_Zp_1ZppUEjahA_Id9cjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>757071170</pqid></control><display><type>article</type><title>Representing Probabilistic Rules with Networks of Gaussian Basis Functions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tresp, Volker ; Hollatz, Jürgen ; Ahmad, Subutai</creator><creatorcontrib>Tresp, Volker ; Hollatz, Jürgen ; Ahmad, Subutai</creatorcontrib><description>There is great interest in understanding the intrinsic knowledge neural networks have acquired during training. Most work in this direction is focussed on the multi-layer perceptron architecture. The topic of this paper is networks of Gaussian basis functions which are used extensively as learning systems in neural computation. We show that networks of Gaussian basis functions can be generated from simple probabilistic rules. Also, if appropriate learning rules are used, probabilistic rules can be extracted from trained networks. We present methods for the reduction of network complexity with the goal of obtaining concise and meaningful rules. We show how prior knowledge can be refined or supplemented using data by employing either a Bayesian approach, by a weighted combination of knowledge bases, or by generating artificial training data representing the prior knowledge. We validate our approach using a standard statistical data set.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1023/A:1007381408604</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Studies</subject><ispartof>Machine learning, 1997-05, Vol.27 (2), p.173-200</ispartof><rights>Kluwer Academic Publishers 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-a05145cbe95ec98180d8c511abe18ec6df84470b5407d4093f31d2aaab41bdbd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tresp, Volker</creatorcontrib><creatorcontrib>Hollatz, Jürgen</creatorcontrib><creatorcontrib>Ahmad, Subutai</creatorcontrib><title>Representing Probabilistic Rules with Networks of Gaussian Basis Functions</title><title>Machine learning</title><description>There is great interest in understanding the intrinsic knowledge neural networks have acquired during training. Most work in this direction is focussed on the multi-layer perceptron architecture. The topic of this paper is networks of Gaussian basis functions which are used extensively as learning systems in neural computation. We show that networks of Gaussian basis functions can be generated from simple probabilistic rules. Also, if appropriate learning rules are used, probabilistic rules can be extracted from trained networks. We present methods for the reduction of network complexity with the goal of obtaining concise and meaningful rules. We show how prior knowledge can be refined or supplemented using data by employing either a Bayesian approach, by a weighted combination of knowledge bases, or by generating artificial training data representing the prior knowledge. We validate our approach using a standard statistical data set.[PUBLICATION ABSTRACT]</description><subject>Studies</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdjrFOwzAUAC0EEqUws1oMbIH3Yjt22EpFC6gCVMEc2Y4DLsEpeYn6-1SCiemW0-kYO0e4QsjF9ewGAbQwKMEUIA_YBJUWGahCHbIJGKOyAnN1zE6INgCQF6aYsMd12PaBQhpieucvfeesi22kIXq-HttAfBeHD_4Uhl3XfxLvGr60I1G0id9aisQXY_JD7BKdsqPGthTO_jhlb4u71_l9tnpePsxnq8znSg-ZBYVSeRdKFXxp0EBtvEK0LqAJvqgbI6UGpyToWkIpGoF1bq11El3tajFll7_dbd99j4GG6iuSD21rU-hGqnItclUK3IsX_8RNN_Zp_1ZppUEjahA_Id9cjw</recordid><startdate>19970501</startdate><enddate>19970501</enddate><creator>Tresp, Volker</creator><creator>Hollatz, Jürgen</creator><creator>Ahmad, Subutai</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>19970501</creationdate><title>Representing Probabilistic Rules with Networks of Gaussian Basis Functions</title><author>Tresp, Volker ; Hollatz, Jürgen ; Ahmad, Subutai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-a05145cbe95ec98180d8c511abe18ec6df84470b5407d4093f31d2aaab41bdbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tresp, Volker</creatorcontrib><creatorcontrib>Hollatz, Jürgen</creatorcontrib><creatorcontrib>Ahmad, Subutai</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tresp, Volker</au><au>Hollatz, Jürgen</au><au>Ahmad, Subutai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representing Probabilistic Rules with Networks of Gaussian Basis Functions</atitle><jtitle>Machine learning</jtitle><date>1997-05-01</date><risdate>1997</risdate><volume>27</volume><issue>2</issue><spage>173</spage><epage>200</epage><pages>173-200</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>There is great interest in understanding the intrinsic knowledge neural networks have acquired during training. Most work in this direction is focussed on the multi-layer perceptron architecture. The topic of this paper is networks of Gaussian basis functions which are used extensively as learning systems in neural computation. We show that networks of Gaussian basis functions can be generated from simple probabilistic rules. Also, if appropriate learning rules are used, probabilistic rules can be extracted from trained networks. We present methods for the reduction of network complexity with the goal of obtaining concise and meaningful rules. We show how prior knowledge can be refined or supplemented using data by employing either a Bayesian approach, by a weighted combination of knowledge bases, or by generating artificial training data representing the prior knowledge. We validate our approach using a standard statistical data set.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1007381408604</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-6125 |
ispartof | Machine learning, 1997-05, Vol.27 (2), p.173-200 |
issn | 0885-6125 1573-0565 |
language | eng |
recordid | cdi_proquest_miscellaneous_27325931 |
source | SpringerLink Journals - AutoHoldings |
subjects | Studies |
title | Representing Probabilistic Rules with Networks of Gaussian Basis Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A58%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representing%20Probabilistic%20Rules%20with%20Networks%20of%20Gaussian%20Basis%20Functions&rft.jtitle=Machine%20learning&rft.au=Tresp,%20Volker&rft.date=1997-05-01&rft.volume=27&rft.issue=2&rft.spage=173&rft.epage=200&rft.pages=173-200&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1023/A:1007381408604&rft_dat=%3Cproquest%3E2158028001%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=757071170&rft_id=info:pmid/&rfr_iscdi=true |