Representing Probabilistic Rules with Networks of Gaussian Basis Functions

There is great interest in understanding the intrinsic knowledge neural networks have acquired during training. Most work in this direction is focussed on the multi-layer perceptron architecture. The topic of this paper is networks of Gaussian basis functions which are used extensively as learning s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning 1997-05, Vol.27 (2), p.173-200
Hauptverfasser: Tresp, Volker, Hollatz, Jürgen, Ahmad, Subutai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 200
container_issue 2
container_start_page 173
container_title Machine learning
container_volume 27
creator Tresp, Volker
Hollatz, Jürgen
Ahmad, Subutai
description There is great interest in understanding the intrinsic knowledge neural networks have acquired during training. Most work in this direction is focussed on the multi-layer perceptron architecture. The topic of this paper is networks of Gaussian basis functions which are used extensively as learning systems in neural computation. We show that networks of Gaussian basis functions can be generated from simple probabilistic rules. Also, if appropriate learning rules are used, probabilistic rules can be extracted from trained networks. We present methods for the reduction of network complexity with the goal of obtaining concise and meaningful rules. We show how prior knowledge can be refined or supplemented using data by employing either a Bayesian approach, by a weighted combination of knowledge bases, or by generating artificial training data representing the prior knowledge. We validate our approach using a standard statistical data set.[PUBLICATION ABSTRACT]
doi_str_mv 10.1023/A:1007381408604
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_27325931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2158028001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-a05145cbe95ec98180d8c511abe18ec6df84470b5407d4093f31d2aaab41bdbd3</originalsourceid><addsrcrecordid>eNpdjrFOwzAUAC0EEqUws1oMbIH3Yjt22EpFC6gCVMEc2Y4DLsEpeYn6-1SCiemW0-kYO0e4QsjF9ewGAbQwKMEUIA_YBJUWGahCHbIJGKOyAnN1zE6INgCQF6aYsMd12PaBQhpieucvfeesi22kIXq-HttAfBeHD_4Uhl3XfxLvGr60I1G0id9aisQXY_JD7BKdsqPGthTO_jhlb4u71_l9tnpePsxnq8znSg-ZBYVSeRdKFXxp0EBtvEK0LqAJvqgbI6UGpyToWkIpGoF1bq11El3tajFll7_dbd99j4GG6iuSD21rU-hGqnItclUK3IsX_8RNN_Zp_1ZppUEjahA_Id9cjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>757071170</pqid></control><display><type>article</type><title>Representing Probabilistic Rules with Networks of Gaussian Basis Functions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tresp, Volker ; Hollatz, Jürgen ; Ahmad, Subutai</creator><creatorcontrib>Tresp, Volker ; Hollatz, Jürgen ; Ahmad, Subutai</creatorcontrib><description>There is great interest in understanding the intrinsic knowledge neural networks have acquired during training. Most work in this direction is focussed on the multi-layer perceptron architecture. The topic of this paper is networks of Gaussian basis functions which are used extensively as learning systems in neural computation. We show that networks of Gaussian basis functions can be generated from simple probabilistic rules. Also, if appropriate learning rules are used, probabilistic rules can be extracted from trained networks. We present methods for the reduction of network complexity with the goal of obtaining concise and meaningful rules. We show how prior knowledge can be refined or supplemented using data by employing either a Bayesian approach, by a weighted combination of knowledge bases, or by generating artificial training data representing the prior knowledge. We validate our approach using a standard statistical data set.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1023/A:1007381408604</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Studies</subject><ispartof>Machine learning, 1997-05, Vol.27 (2), p.173-200</ispartof><rights>Kluwer Academic Publishers 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-a05145cbe95ec98180d8c511abe18ec6df84470b5407d4093f31d2aaab41bdbd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tresp, Volker</creatorcontrib><creatorcontrib>Hollatz, Jürgen</creatorcontrib><creatorcontrib>Ahmad, Subutai</creatorcontrib><title>Representing Probabilistic Rules with Networks of Gaussian Basis Functions</title><title>Machine learning</title><description>There is great interest in understanding the intrinsic knowledge neural networks have acquired during training. Most work in this direction is focussed on the multi-layer perceptron architecture. The topic of this paper is networks of Gaussian basis functions which are used extensively as learning systems in neural computation. We show that networks of Gaussian basis functions can be generated from simple probabilistic rules. Also, if appropriate learning rules are used, probabilistic rules can be extracted from trained networks. We present methods for the reduction of network complexity with the goal of obtaining concise and meaningful rules. We show how prior knowledge can be refined or supplemented using data by employing either a Bayesian approach, by a weighted combination of knowledge bases, or by generating artificial training data representing the prior knowledge. We validate our approach using a standard statistical data set.[PUBLICATION ABSTRACT]</description><subject>Studies</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdjrFOwzAUAC0EEqUws1oMbIH3Yjt22EpFC6gCVMEc2Y4DLsEpeYn6-1SCiemW0-kYO0e4QsjF9ewGAbQwKMEUIA_YBJUWGahCHbIJGKOyAnN1zE6INgCQF6aYsMd12PaBQhpieucvfeesi22kIXq-HttAfBeHD_4Uhl3XfxLvGr60I1G0id9aisQXY_JD7BKdsqPGthTO_jhlb4u71_l9tnpePsxnq8znSg-ZBYVSeRdKFXxp0EBtvEK0LqAJvqgbI6UGpyToWkIpGoF1bq11El3tajFll7_dbd99j4GG6iuSD21rU-hGqnItclUK3IsX_8RNN_Zp_1ZppUEjahA_Id9cjw</recordid><startdate>19970501</startdate><enddate>19970501</enddate><creator>Tresp, Volker</creator><creator>Hollatz, Jürgen</creator><creator>Ahmad, Subutai</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>19970501</creationdate><title>Representing Probabilistic Rules with Networks of Gaussian Basis Functions</title><author>Tresp, Volker ; Hollatz, Jürgen ; Ahmad, Subutai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-a05145cbe95ec98180d8c511abe18ec6df84470b5407d4093f31d2aaab41bdbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tresp, Volker</creatorcontrib><creatorcontrib>Hollatz, Jürgen</creatorcontrib><creatorcontrib>Ahmad, Subutai</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tresp, Volker</au><au>Hollatz, Jürgen</au><au>Ahmad, Subutai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representing Probabilistic Rules with Networks of Gaussian Basis Functions</atitle><jtitle>Machine learning</jtitle><date>1997-05-01</date><risdate>1997</risdate><volume>27</volume><issue>2</issue><spage>173</spage><epage>200</epage><pages>173-200</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>There is great interest in understanding the intrinsic knowledge neural networks have acquired during training. Most work in this direction is focussed on the multi-layer perceptron architecture. The topic of this paper is networks of Gaussian basis functions which are used extensively as learning systems in neural computation. We show that networks of Gaussian basis functions can be generated from simple probabilistic rules. Also, if appropriate learning rules are used, probabilistic rules can be extracted from trained networks. We present methods for the reduction of network complexity with the goal of obtaining concise and meaningful rules. We show how prior knowledge can be refined or supplemented using data by employing either a Bayesian approach, by a weighted combination of knowledge bases, or by generating artificial training data representing the prior knowledge. We validate our approach using a standard statistical data set.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1007381408604</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-6125
ispartof Machine learning, 1997-05, Vol.27 (2), p.173-200
issn 0885-6125
1573-0565
language eng
recordid cdi_proquest_miscellaneous_27325931
source SpringerLink Journals - AutoHoldings
subjects Studies
title Representing Probabilistic Rules with Networks of Gaussian Basis Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A58%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representing%20Probabilistic%20Rules%20with%20Networks%20of%20Gaussian%20Basis%20Functions&rft.jtitle=Machine%20learning&rft.au=Tresp,%20Volker&rft.date=1997-05-01&rft.volume=27&rft.issue=2&rft.spage=173&rft.epage=200&rft.pages=173-200&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1023/A:1007381408604&rft_dat=%3Cproquest%3E2158028001%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=757071170&rft_id=info:pmid/&rfr_iscdi=true