Engineering an Ag/Au bimetallic nanoparticle-based acetylcholinesterase SERS biosensor for in situ sensitive detection of organophosphorus pesticide residues in food
Developing simple, efficient, and inexpensive method for trace amount organophosphorus pesticides’ (OPs) detection with high sensitivity and specificity is of significant importance for guaranteeing food safety. Herein, an Ag/Au bimetallic nanoparticle-based acetylcholinesterase (AChE) surface-enhan...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2023-01, Vol.415 (1), p.203-210 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 210 |
---|---|
container_issue | 1 |
container_start_page | 203 |
container_title | Analytical and bioanalytical chemistry |
container_volume | 415 |
creator | Xu, Shuling Li, Min Li, Xia Jiang, Yanhui Yu, Linlin Zhao, Yue Wen, Liyuan Xue, Qingwang |
description | Developing simple, efficient, and inexpensive method for trace amount organophosphorus pesticides’ (OPs) detection with high sensitivity and specificity is of significant importance for guaranteeing food safety. Herein, an Ag/Au bimetallic nanoparticle-based acetylcholinesterase (AChE) surface-enhanced Raman scattering (SERS) biosensor was constructed for in situ simple and sensitive detection of pesticide residues in food. The principle of this biosensor exploited 4-mercaptophenylboronic acid (4-MPBA)-modified Ag/Au bimetallic nanoprobes as SERS signal probe to improve sensitivity and stability. The combination of AChE and choline oxidase (CHO) can hydrolyze acetylcholine (ATCh) to generate H
2
O
2
. The product of H
2
O
2
selectively oxidizes the boronate ester of 4-MPBA, decreasing the Raman intensity of the B-O symmetric stretching. In the presence of OPs, it could inhibit the production of H
2
O
2
by destroying the AChE activity, so the reduction of the SERS signal was also alleviated. Based on the principle, an Ag/Au bimetallic nanoparticle-based AChE SERS sensor was established without any complicated pretreatments. Benefiting from the synergistic effects of Ag/Au bimetallic hybrids, a linear detection range from 5×10
−9
to 5×10
−4
M was achieved with a limit of detection down to 1.7×10
−9
M using parathion-methyl (PM) as the representative model of OPs. Moreover, the SERS biosensor uses readily available reagents and is simple to implement. Importantly, the proposed SERS biosensor was used to quantitatively analyze OP residues in apple peels. The levels of OPs detected in real samples by this method were consistent with those obtained using gas chromatography–mass spectrometry (GC–MS), suggesting the proposed assay has great potential applications for OPs in situ detection in food safety fields.
Graphical abstract |
doi_str_mv | 10.1007/s00216-022-04400-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2732541782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A732403361</galeid><sourcerecordid>A732403361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-6ae1a689d023b18b8e953bfca89d42c4d4c6e32e89e411aaf1a0e78e454a06d63</originalsourceid><addsrcrecordid>eNp9kd2K1TAUhYsoznj0BbyQgDfedGbnpzk5l4fh-AMDgqPXJU12OxnapCapMA_ke5racQQvJGwSFmutbPiq6jWFCwqwv0wAjMoaGKtBCIAanlTnVFJVM9nA08e3YGfVi5TuAGijqHxenXHJOZdUnFc_T35wHjE6PxDtyXG4PC6kcxNmPY7OEK99mHXMzoxYdzqhJdpgvh_NbRhLMmWMRSU3py83JRcS-hQi6cs4T5LLC1kll90PJBYzmuyCJ6EnIQ5r921IZeKSyFzKnHEWScTk7IJprehDsC-rZ70eE756uHfVt_enr1cf6-vPHz5dHa9rIxTkWmqkWqqDBcY7qjqFh4Z3vdFFEswIK4xEzlAdUFCqdU814F6haIQGaSXfVe-23jmG7-X_3E4uGRxH7TEsqWV7zhpB94oV69t_rHdhib5sV1wSDoofytlVF5tr0CO2zvchR23KsTg5Ezz2rujHUitgJVICbAuYGFKK2LdzdJOO9y2FdqXebtTbQr39Tb2FEnrzsMvSTWgfI38wFwPfDGleQWP8u-x_an8BHY665w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760983939</pqid></control><display><type>article</type><title>Engineering an Ag/Au bimetallic nanoparticle-based acetylcholinesterase SERS biosensor for in situ sensitive detection of organophosphorus pesticide residues in food</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Xu, Shuling ; Li, Min ; Li, Xia ; Jiang, Yanhui ; Yu, Linlin ; Zhao, Yue ; Wen, Liyuan ; Xue, Qingwang</creator><creatorcontrib>Xu, Shuling ; Li, Min ; Li, Xia ; Jiang, Yanhui ; Yu, Linlin ; Zhao, Yue ; Wen, Liyuan ; Xue, Qingwang</creatorcontrib><description>Developing simple, efficient, and inexpensive method for trace amount organophosphorus pesticides’ (OPs) detection with high sensitivity and specificity is of significant importance for guaranteeing food safety. Herein, an Ag/Au bimetallic nanoparticle-based acetylcholinesterase (AChE) surface-enhanced Raman scattering (SERS) biosensor was constructed for in situ simple and sensitive detection of pesticide residues in food. The principle of this biosensor exploited 4-mercaptophenylboronic acid (4-MPBA)-modified Ag/Au bimetallic nanoprobes as SERS signal probe to improve sensitivity and stability. The combination of AChE and choline oxidase (CHO) can hydrolyze acetylcholine (ATCh) to generate H
2
O
2
. The product of H
2
O
2
selectively oxidizes the boronate ester of 4-MPBA, decreasing the Raman intensity of the B-O symmetric stretching. In the presence of OPs, it could inhibit the production of H
2
O
2
by destroying the AChE activity, so the reduction of the SERS signal was also alleviated. Based on the principle, an Ag/Au bimetallic nanoparticle-based AChE SERS sensor was established without any complicated pretreatments. Benefiting from the synergistic effects of Ag/Au bimetallic hybrids, a linear detection range from 5×10
−9
to 5×10
−4
M was achieved with a limit of detection down to 1.7×10
−9
M using parathion-methyl (PM) as the representative model of OPs. Moreover, the SERS biosensor uses readily available reagents and is simple to implement. Importantly, the proposed SERS biosensor was used to quantitatively analyze OP residues in apple peels. The levels of OPs detected in real samples by this method were consistent with those obtained using gas chromatography–mass spectrometry (GC–MS), suggesting the proposed assay has great potential applications for OPs in situ detection in food safety fields.
Graphical abstract</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-022-04400-0</identifier><identifier>PMID: 36333614</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acetylcholinesterase ; Acetylcholinesterase - chemistry ; Analysis ; Analytical Chemistry ; Bimetals ; Biochemistry ; Biosensing Techniques - methods ; Biosensors ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Choline ; Choline oxidase ; Food contamination ; Food safety ; Food Science ; Gas chromatography ; Gold ; Gold - chemistry ; Gold compounds ; Hybrids ; Hydrogen peroxide ; Hydrogen Peroxide - chemistry ; Laboratory Medicine ; Mass spectrometry ; Mass spectroscopy ; Metal Nanoparticles - chemistry ; Monitoring/Environmental Analysis ; Nanoparticles ; Organophosphorus compounds ; Organophosphorus Compounds - analysis ; Organophosphorus pesticides ; Parathion ; Pesticide residues ; Pesticide Residues - analysis ; Pesticides ; Pesticides - analysis ; Principles ; Properties ; Raman effect ; Raman spectra ; Reagents ; Research Paper ; Residues ; Sensitivity ; Silver ; Silver compounds ; Spectrum Analysis, Raman ; Synergistic effect</subject><ispartof>Analytical and bioanalytical chemistry, 2023-01, Vol.415 (1), p.203-210</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-6ae1a689d023b18b8e953bfca89d42c4d4c6e32e89e411aaf1a0e78e454a06d63</citedby><cites>FETCH-LOGICAL-c480t-6ae1a689d023b18b8e953bfca89d42c4d4c6e32e89e411aaf1a0e78e454a06d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-022-04400-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-022-04400-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36333614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Shuling</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Li, Xia</creatorcontrib><creatorcontrib>Jiang, Yanhui</creatorcontrib><creatorcontrib>Yu, Linlin</creatorcontrib><creatorcontrib>Zhao, Yue</creatorcontrib><creatorcontrib>Wen, Liyuan</creatorcontrib><creatorcontrib>Xue, Qingwang</creatorcontrib><title>Engineering an Ag/Au bimetallic nanoparticle-based acetylcholinesterase SERS biosensor for in situ sensitive detection of organophosphorus pesticide residues in food</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Developing simple, efficient, and inexpensive method for trace amount organophosphorus pesticides’ (OPs) detection with high sensitivity and specificity is of significant importance for guaranteeing food safety. Herein, an Ag/Au bimetallic nanoparticle-based acetylcholinesterase (AChE) surface-enhanced Raman scattering (SERS) biosensor was constructed for in situ simple and sensitive detection of pesticide residues in food. The principle of this biosensor exploited 4-mercaptophenylboronic acid (4-MPBA)-modified Ag/Au bimetallic nanoprobes as SERS signal probe to improve sensitivity and stability. The combination of AChE and choline oxidase (CHO) can hydrolyze acetylcholine (ATCh) to generate H
2
O
2
. The product of H
2
O
2
selectively oxidizes the boronate ester of 4-MPBA, decreasing the Raman intensity of the B-O symmetric stretching. In the presence of OPs, it could inhibit the production of H
2
O
2
by destroying the AChE activity, so the reduction of the SERS signal was also alleviated. Based on the principle, an Ag/Au bimetallic nanoparticle-based AChE SERS sensor was established without any complicated pretreatments. Benefiting from the synergistic effects of Ag/Au bimetallic hybrids, a linear detection range from 5×10
−9
to 5×10
−4
M was achieved with a limit of detection down to 1.7×10
−9
M using parathion-methyl (PM) as the representative model of OPs. Moreover, the SERS biosensor uses readily available reagents and is simple to implement. Importantly, the proposed SERS biosensor was used to quantitatively analyze OP residues in apple peels. The levels of OPs detected in real samples by this method were consistent with those obtained using gas chromatography–mass spectrometry (GC–MS), suggesting the proposed assay has great potential applications for OPs in situ detection in food safety fields.
Graphical abstract</description><subject>Acetylcholinesterase</subject><subject>Acetylcholinesterase - chemistry</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Bimetals</subject><subject>Biochemistry</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Choline</subject><subject>Choline oxidase</subject><subject>Food contamination</subject><subject>Food safety</subject><subject>Food Science</subject><subject>Gas chromatography</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Gold compounds</subject><subject>Hybrids</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen Peroxide - chemistry</subject><subject>Laboratory Medicine</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Monitoring/Environmental Analysis</subject><subject>Nanoparticles</subject><subject>Organophosphorus compounds</subject><subject>Organophosphorus Compounds - analysis</subject><subject>Organophosphorus pesticides</subject><subject>Parathion</subject><subject>Pesticide residues</subject><subject>Pesticide Residues - analysis</subject><subject>Pesticides</subject><subject>Pesticides - analysis</subject><subject>Principles</subject><subject>Properties</subject><subject>Raman effect</subject><subject>Raman spectra</subject><subject>Reagents</subject><subject>Research Paper</subject><subject>Residues</subject><subject>Sensitivity</subject><subject>Silver</subject><subject>Silver compounds</subject><subject>Spectrum Analysis, Raman</subject><subject>Synergistic effect</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kd2K1TAUhYsoznj0BbyQgDfedGbnpzk5l4fh-AMDgqPXJU12OxnapCapMA_ke5racQQvJGwSFmutbPiq6jWFCwqwv0wAjMoaGKtBCIAanlTnVFJVM9nA08e3YGfVi5TuAGijqHxenXHJOZdUnFc_T35wHjE6PxDtyXG4PC6kcxNmPY7OEK99mHXMzoxYdzqhJdpgvh_NbRhLMmWMRSU3py83JRcS-hQi6cs4T5LLC1kll90PJBYzmuyCJ6EnIQ5r921IZeKSyFzKnHEWScTk7IJprehDsC-rZ70eE756uHfVt_enr1cf6-vPHz5dHa9rIxTkWmqkWqqDBcY7qjqFh4Z3vdFFEswIK4xEzlAdUFCqdU814F6haIQGaSXfVe-23jmG7-X_3E4uGRxH7TEsqWV7zhpB94oV69t_rHdhib5sV1wSDoofytlVF5tr0CO2zvchR23KsTg5Ezz2rujHUitgJVICbAuYGFKK2LdzdJOO9y2FdqXebtTbQr39Tb2FEnrzsMvSTWgfI38wFwPfDGleQWP8u-x_an8BHY665w</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Xu, Shuling</creator><creator>Li, Min</creator><creator>Li, Xia</creator><creator>Jiang, Yanhui</creator><creator>Yu, Linlin</creator><creator>Zhao, Yue</creator><creator>Wen, Liyuan</creator><creator>Xue, Qingwang</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20230101</creationdate><title>Engineering an Ag/Au bimetallic nanoparticle-based acetylcholinesterase SERS biosensor for in situ sensitive detection of organophosphorus pesticide residues in food</title><author>Xu, Shuling ; Li, Min ; Li, Xia ; Jiang, Yanhui ; Yu, Linlin ; Zhao, Yue ; Wen, Liyuan ; Xue, Qingwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-6ae1a689d023b18b8e953bfca89d42c4d4c6e32e89e411aaf1a0e78e454a06d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acetylcholinesterase</topic><topic>Acetylcholinesterase - chemistry</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Bimetals</topic><topic>Biochemistry</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Choline</topic><topic>Choline oxidase</topic><topic>Food contamination</topic><topic>Food safety</topic><topic>Food Science</topic><topic>Gas chromatography</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Gold compounds</topic><topic>Hybrids</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen Peroxide - chemistry</topic><topic>Laboratory Medicine</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Monitoring/Environmental Analysis</topic><topic>Nanoparticles</topic><topic>Organophosphorus compounds</topic><topic>Organophosphorus Compounds - analysis</topic><topic>Organophosphorus pesticides</topic><topic>Parathion</topic><topic>Pesticide residues</topic><topic>Pesticide Residues - analysis</topic><topic>Pesticides</topic><topic>Pesticides - analysis</topic><topic>Principles</topic><topic>Properties</topic><topic>Raman effect</topic><topic>Raman spectra</topic><topic>Reagents</topic><topic>Research Paper</topic><topic>Residues</topic><topic>Sensitivity</topic><topic>Silver</topic><topic>Silver compounds</topic><topic>Spectrum Analysis, Raman</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Shuling</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Li, Xia</creatorcontrib><creatorcontrib>Jiang, Yanhui</creatorcontrib><creatorcontrib>Yu, Linlin</creatorcontrib><creatorcontrib>Zhao, Yue</creatorcontrib><creatorcontrib>Wen, Liyuan</creatorcontrib><creatorcontrib>Xue, Qingwang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Shuling</au><au>Li, Min</au><au>Li, Xia</au><au>Jiang, Yanhui</au><au>Yu, Linlin</au><au>Zhao, Yue</au><au>Wen, Liyuan</au><au>Xue, Qingwang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering an Ag/Au bimetallic nanoparticle-based acetylcholinesterase SERS biosensor for in situ sensitive detection of organophosphorus pesticide residues in food</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>415</volume><issue>1</issue><spage>203</spage><epage>210</epage><pages>203-210</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>Developing simple, efficient, and inexpensive method for trace amount organophosphorus pesticides’ (OPs) detection with high sensitivity and specificity is of significant importance for guaranteeing food safety. Herein, an Ag/Au bimetallic nanoparticle-based acetylcholinesterase (AChE) surface-enhanced Raman scattering (SERS) biosensor was constructed for in situ simple and sensitive detection of pesticide residues in food. The principle of this biosensor exploited 4-mercaptophenylboronic acid (4-MPBA)-modified Ag/Au bimetallic nanoprobes as SERS signal probe to improve sensitivity and stability. The combination of AChE and choline oxidase (CHO) can hydrolyze acetylcholine (ATCh) to generate H
2
O
2
. The product of H
2
O
2
selectively oxidizes the boronate ester of 4-MPBA, decreasing the Raman intensity of the B-O symmetric stretching. In the presence of OPs, it could inhibit the production of H
2
O
2
by destroying the AChE activity, so the reduction of the SERS signal was also alleviated. Based on the principle, an Ag/Au bimetallic nanoparticle-based AChE SERS sensor was established without any complicated pretreatments. Benefiting from the synergistic effects of Ag/Au bimetallic hybrids, a linear detection range from 5×10
−9
to 5×10
−4
M was achieved with a limit of detection down to 1.7×10
−9
M using parathion-methyl (PM) as the representative model of OPs. Moreover, the SERS biosensor uses readily available reagents and is simple to implement. Importantly, the proposed SERS biosensor was used to quantitatively analyze OP residues in apple peels. The levels of OPs detected in real samples by this method were consistent with those obtained using gas chromatography–mass spectrometry (GC–MS), suggesting the proposed assay has great potential applications for OPs in situ detection in food safety fields.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36333614</pmid><doi>10.1007/s00216-022-04400-0</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2642 |
ispartof | Analytical and bioanalytical chemistry, 2023-01, Vol.415 (1), p.203-210 |
issn | 1618-2642 1618-2650 |
language | eng |
recordid | cdi_proquest_miscellaneous_2732541782 |
source | MEDLINE; SpringerLink Journals |
subjects | Acetylcholinesterase Acetylcholinesterase - chemistry Analysis Analytical Chemistry Bimetals Biochemistry Biosensing Techniques - methods Biosensors Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Choline Choline oxidase Food contamination Food safety Food Science Gas chromatography Gold Gold - chemistry Gold compounds Hybrids Hydrogen peroxide Hydrogen Peroxide - chemistry Laboratory Medicine Mass spectrometry Mass spectroscopy Metal Nanoparticles - chemistry Monitoring/Environmental Analysis Nanoparticles Organophosphorus compounds Organophosphorus Compounds - analysis Organophosphorus pesticides Parathion Pesticide residues Pesticide Residues - analysis Pesticides Pesticides - analysis Principles Properties Raman effect Raman spectra Reagents Research Paper Residues Sensitivity Silver Silver compounds Spectrum Analysis, Raman Synergistic effect |
title | Engineering an Ag/Au bimetallic nanoparticle-based acetylcholinesterase SERS biosensor for in situ sensitive detection of organophosphorus pesticide residues in food |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A50%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20an%20Ag/Au%20bimetallic%20nanoparticle-based%20acetylcholinesterase%20SERS%20biosensor%20for%20in%20situ%20sensitive%20detection%20of%20organophosphorus%20pesticide%20residues%20in%20food&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Xu,%20Shuling&rft.date=2023-01-01&rft.volume=415&rft.issue=1&rft.spage=203&rft.epage=210&rft.pages=203-210&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-022-04400-0&rft_dat=%3Cgale_proqu%3EA732403361%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760983939&rft_id=info:pmid/36333614&rft_galeid=A732403361&rfr_iscdi=true |