Carbon nanotube bridged nickel hexacyanoferrate architecture for high-performance hybrid capacitive deionization

[Display omitted] Although widely used as hybrid capacitive deionization (HCDI) electrode material, the low intrinsic conductivity of metal hexacyanometalate (MHCF) severely hinders the fast insertion/extraction of Na+ in/from its 3D framework structure, damaging its desalination performance. Herein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2023-01, Vol.630, p.372-381
Hauptverfasser: Xu, Liming, Ding, Zibiao, Chen, Yaoyu, Xu, Xingtao, Liu, Yong, Li, Jiabao, Lu, Ting, Pan, Likun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 381
container_issue
container_start_page 372
container_title Journal of colloid and interface science
container_volume 630
creator Xu, Liming
Ding, Zibiao
Chen, Yaoyu
Xu, Xingtao
Liu, Yong
Li, Jiabao
Lu, Ting
Pan, Likun
description [Display omitted] Although widely used as hybrid capacitive deionization (HCDI) electrode material, the low intrinsic conductivity of metal hexacyanometalate (MHCF) severely hinders the fast insertion/extraction of Na+ in/from its 3D framework structure, damaging its desalination performance. Herein, we design a carbon nanotube (CNT) bridged nickel hexacyanoferrate architecture (NiHCF). The highly conductive CNT not only acts as the skeleton for the uniform growth of NiHCF to provide more ion-accessible surface and active sites but also serves as the conductive bridge to connect the NiHCF particles, which prevents the agglomeration of NiHCF particles and facilitates the charge transfer and ion diffusion during the desalination process. Therefore, the HCDI cell assembled by NiHCF/CNT cathode and AC anode exhibits an excellent desalination performance with a high desalination capacity of 29.1 mg g−1 and a superior desalination rate of 7.2 mg g−1 min−1 in 500 mg L−1 NaCl solution. This work provides a facile method for preparing high-performance MHCF-based electrodes for desalination application.
doi_str_mv 10.1016/j.jcis.2022.10.140
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2732540716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979722019117</els_id><sourcerecordid>2732540716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-6b760919569adf91e526c1f9bcd7d584a18768542a51f609a69d6bef0565d7bb3</originalsourceid><addsrcrecordid>eNp9UD1PwzAUtBBIlMIfYPLIkmI7sV1LLKjiS6rEArPl2C-NQ5oEO60ovx6HMjPd0727k-4QuqZkQQkVt82isT4uGGFsMXEFOUEzShTPJCX5KZoRwmimpJLn6CLGhhBKOVczNKxMKPsOd6brx10JuAzebcDhztsPaHENX8Ye0rOCEMwI2ARb-xHsuAuAqz7g2m_qbICQ7q3pLOD6MGVgawZj_ej3gB34vvPfZkxwic4q00a4-sM5en98eFs9Z-vXp5fV_TqzeZ6PmSilIIoqLpRxlaLAmbC0UqV10vFlYehSiiUvmOG0SkojlBMlVIQL7mRZ5nN0c8wdQv-5gzjqrY8W2tZ00O-iZjJnvCCSiiRlR6kNfYwBKj0EvzXhoCnR07y60dO8epr3lytIMt0dTZBK7D0EHa2H1N_5kNbRrvf_2X8ALNOGIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732540716</pqid></control><display><type>article</type><title>Carbon nanotube bridged nickel hexacyanoferrate architecture for high-performance hybrid capacitive deionization</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Xu, Liming ; Ding, Zibiao ; Chen, Yaoyu ; Xu, Xingtao ; Liu, Yong ; Li, Jiabao ; Lu, Ting ; Pan, Likun</creator><creatorcontrib>Xu, Liming ; Ding, Zibiao ; Chen, Yaoyu ; Xu, Xingtao ; Liu, Yong ; Li, Jiabao ; Lu, Ting ; Pan, Likun</creatorcontrib><description>[Display omitted] Although widely used as hybrid capacitive deionization (HCDI) electrode material, the low intrinsic conductivity of metal hexacyanometalate (MHCF) severely hinders the fast insertion/extraction of Na+ in/from its 3D framework structure, damaging its desalination performance. Herein, we design a carbon nanotube (CNT) bridged nickel hexacyanoferrate architecture (NiHCF). The highly conductive CNT not only acts as the skeleton for the uniform growth of NiHCF to provide more ion-accessible surface and active sites but also serves as the conductive bridge to connect the NiHCF particles, which prevents the agglomeration of NiHCF particles and facilitates the charge transfer and ion diffusion during the desalination process. Therefore, the HCDI cell assembled by NiHCF/CNT cathode and AC anode exhibits an excellent desalination performance with a high desalination capacity of 29.1 mg g−1 and a superior desalination rate of 7.2 mg g−1 min−1 in 500 mg L−1 NaCl solution. This work provides a facile method for preparing high-performance MHCF-based electrodes for desalination application.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2022.10.140</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Capacitive deionization ; Carbon nanotube ; Conductive bridge ; Desalination ; Metal hexacyanometalate</subject><ispartof>Journal of colloid and interface science, 2023-01, Vol.630, p.372-381</ispartof><rights>2022 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-6b760919569adf91e526c1f9bcd7d584a18768542a51f609a69d6bef0565d7bb3</citedby><cites>FETCH-LOGICAL-c333t-6b760919569adf91e526c1f9bcd7d584a18768542a51f609a69d6bef0565d7bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2022.10.140$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Xu, Liming</creatorcontrib><creatorcontrib>Ding, Zibiao</creatorcontrib><creatorcontrib>Chen, Yaoyu</creatorcontrib><creatorcontrib>Xu, Xingtao</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Li, Jiabao</creatorcontrib><creatorcontrib>Lu, Ting</creatorcontrib><creatorcontrib>Pan, Likun</creatorcontrib><title>Carbon nanotube bridged nickel hexacyanoferrate architecture for high-performance hybrid capacitive deionization</title><title>Journal of colloid and interface science</title><description>[Display omitted] Although widely used as hybrid capacitive deionization (HCDI) electrode material, the low intrinsic conductivity of metal hexacyanometalate (MHCF) severely hinders the fast insertion/extraction of Na+ in/from its 3D framework structure, damaging its desalination performance. Herein, we design a carbon nanotube (CNT) bridged nickel hexacyanoferrate architecture (NiHCF). The highly conductive CNT not only acts as the skeleton for the uniform growth of NiHCF to provide more ion-accessible surface and active sites but also serves as the conductive bridge to connect the NiHCF particles, which prevents the agglomeration of NiHCF particles and facilitates the charge transfer and ion diffusion during the desalination process. Therefore, the HCDI cell assembled by NiHCF/CNT cathode and AC anode exhibits an excellent desalination performance with a high desalination capacity of 29.1 mg g−1 and a superior desalination rate of 7.2 mg g−1 min−1 in 500 mg L−1 NaCl solution. This work provides a facile method for preparing high-performance MHCF-based electrodes for desalination application.</description><subject>Capacitive deionization</subject><subject>Carbon nanotube</subject><subject>Conductive bridge</subject><subject>Desalination</subject><subject>Metal hexacyanometalate</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UD1PwzAUtBBIlMIfYPLIkmI7sV1LLKjiS6rEArPl2C-NQ5oEO60ovx6HMjPd0727k-4QuqZkQQkVt82isT4uGGFsMXEFOUEzShTPJCX5KZoRwmimpJLn6CLGhhBKOVczNKxMKPsOd6brx10JuAzebcDhztsPaHENX8Ye0rOCEMwI2ARb-xHsuAuAqz7g2m_qbICQ7q3pLOD6MGVgawZj_ej3gB34vvPfZkxwic4q00a4-sM5en98eFs9Z-vXp5fV_TqzeZ6PmSilIIoqLpRxlaLAmbC0UqV10vFlYehSiiUvmOG0SkojlBMlVIQL7mRZ5nN0c8wdQv-5gzjqrY8W2tZ00O-iZjJnvCCSiiRlR6kNfYwBKj0EvzXhoCnR07y60dO8epr3lytIMt0dTZBK7D0EHa2H1N_5kNbRrvf_2X8ALNOGIQ</recordid><startdate>20230115</startdate><enddate>20230115</enddate><creator>Xu, Liming</creator><creator>Ding, Zibiao</creator><creator>Chen, Yaoyu</creator><creator>Xu, Xingtao</creator><creator>Liu, Yong</creator><creator>Li, Jiabao</creator><creator>Lu, Ting</creator><creator>Pan, Likun</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230115</creationdate><title>Carbon nanotube bridged nickel hexacyanoferrate architecture for high-performance hybrid capacitive deionization</title><author>Xu, Liming ; Ding, Zibiao ; Chen, Yaoyu ; Xu, Xingtao ; Liu, Yong ; Li, Jiabao ; Lu, Ting ; Pan, Likun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-6b760919569adf91e526c1f9bcd7d584a18768542a51f609a69d6bef0565d7bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Capacitive deionization</topic><topic>Carbon nanotube</topic><topic>Conductive bridge</topic><topic>Desalination</topic><topic>Metal hexacyanometalate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Liming</creatorcontrib><creatorcontrib>Ding, Zibiao</creatorcontrib><creatorcontrib>Chen, Yaoyu</creatorcontrib><creatorcontrib>Xu, Xingtao</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Li, Jiabao</creatorcontrib><creatorcontrib>Lu, Ting</creatorcontrib><creatorcontrib>Pan, Likun</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Liming</au><au>Ding, Zibiao</au><au>Chen, Yaoyu</au><au>Xu, Xingtao</au><au>Liu, Yong</au><au>Li, Jiabao</au><au>Lu, Ting</au><au>Pan, Likun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon nanotube bridged nickel hexacyanoferrate architecture for high-performance hybrid capacitive deionization</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2023-01-15</date><risdate>2023</risdate><volume>630</volume><spage>372</spage><epage>381</epage><pages>372-381</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted] Although widely used as hybrid capacitive deionization (HCDI) electrode material, the low intrinsic conductivity of metal hexacyanometalate (MHCF) severely hinders the fast insertion/extraction of Na+ in/from its 3D framework structure, damaging its desalination performance. Herein, we design a carbon nanotube (CNT) bridged nickel hexacyanoferrate architecture (NiHCF). The highly conductive CNT not only acts as the skeleton for the uniform growth of NiHCF to provide more ion-accessible surface and active sites but also serves as the conductive bridge to connect the NiHCF particles, which prevents the agglomeration of NiHCF particles and facilitates the charge transfer and ion diffusion during the desalination process. Therefore, the HCDI cell assembled by NiHCF/CNT cathode and AC anode exhibits an excellent desalination performance with a high desalination capacity of 29.1 mg g−1 and a superior desalination rate of 7.2 mg g−1 min−1 in 500 mg L−1 NaCl solution. This work provides a facile method for preparing high-performance MHCF-based electrodes for desalination application.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2022.10.140</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2023-01, Vol.630, p.372-381
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2732540716
source Elsevier ScienceDirect Journals Complete
subjects Capacitive deionization
Carbon nanotube
Conductive bridge
Desalination
Metal hexacyanometalate
title Carbon nanotube bridged nickel hexacyanoferrate architecture for high-performance hybrid capacitive deionization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A42%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20nanotube%20bridged%20nickel%20hexacyanoferrate%20architecture%20for%20high-performance%20hybrid%20capacitive%20deionization&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Xu,%20Liming&rft.date=2023-01-15&rft.volume=630&rft.spage=372&rft.epage=381&rft.pages=372-381&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2022.10.140&rft_dat=%3Cproquest_cross%3E2732540716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2732540716&rft_id=info:pmid/&rft_els_id=S0021979722019117&rfr_iscdi=true