Carbon nanotube bridged nickel hexacyanoferrate architecture for high-performance hybrid capacitive deionization
[Display omitted] Although widely used as hybrid capacitive deionization (HCDI) electrode material, the low intrinsic conductivity of metal hexacyanometalate (MHCF) severely hinders the fast insertion/extraction of Na+ in/from its 3D framework structure, damaging its desalination performance. Herein...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2023-01, Vol.630, p.372-381 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 381 |
---|---|
container_issue | |
container_start_page | 372 |
container_title | Journal of colloid and interface science |
container_volume | 630 |
creator | Xu, Liming Ding, Zibiao Chen, Yaoyu Xu, Xingtao Liu, Yong Li, Jiabao Lu, Ting Pan, Likun |
description | [Display omitted]
Although widely used as hybrid capacitive deionization (HCDI) electrode material, the low intrinsic conductivity of metal hexacyanometalate (MHCF) severely hinders the fast insertion/extraction of Na+ in/from its 3D framework structure, damaging its desalination performance. Herein, we design a carbon nanotube (CNT) bridged nickel hexacyanoferrate architecture (NiHCF). The highly conductive CNT not only acts as the skeleton for the uniform growth of NiHCF to provide more ion-accessible surface and active sites but also serves as the conductive bridge to connect the NiHCF particles, which prevents the agglomeration of NiHCF particles and facilitates the charge transfer and ion diffusion during the desalination process. Therefore, the HCDI cell assembled by NiHCF/CNT cathode and AC anode exhibits an excellent desalination performance with a high desalination capacity of 29.1 mg g−1 and a superior desalination rate of 7.2 mg g−1 min−1 in 500 mg L−1 NaCl solution. This work provides a facile method for preparing high-performance MHCF-based electrodes for desalination application. |
doi_str_mv | 10.1016/j.jcis.2022.10.140 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2732540716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979722019117</els_id><sourcerecordid>2732540716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-6b760919569adf91e526c1f9bcd7d584a18768542a51f609a69d6bef0565d7bb3</originalsourceid><addsrcrecordid>eNp9UD1PwzAUtBBIlMIfYPLIkmI7sV1LLKjiS6rEArPl2C-NQ5oEO60ovx6HMjPd0727k-4QuqZkQQkVt82isT4uGGFsMXEFOUEzShTPJCX5KZoRwmimpJLn6CLGhhBKOVczNKxMKPsOd6brx10JuAzebcDhztsPaHENX8Ye0rOCEMwI2ARb-xHsuAuAqz7g2m_qbICQ7q3pLOD6MGVgawZj_ej3gB34vvPfZkxwic4q00a4-sM5en98eFs9Z-vXp5fV_TqzeZ6PmSilIIoqLpRxlaLAmbC0UqV10vFlYehSiiUvmOG0SkojlBMlVIQL7mRZ5nN0c8wdQv-5gzjqrY8W2tZ00O-iZjJnvCCSiiRlR6kNfYwBKj0EvzXhoCnR07y60dO8epr3lytIMt0dTZBK7D0EHa2H1N_5kNbRrvf_2X8ALNOGIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732540716</pqid></control><display><type>article</type><title>Carbon nanotube bridged nickel hexacyanoferrate architecture for high-performance hybrid capacitive deionization</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Xu, Liming ; Ding, Zibiao ; Chen, Yaoyu ; Xu, Xingtao ; Liu, Yong ; Li, Jiabao ; Lu, Ting ; Pan, Likun</creator><creatorcontrib>Xu, Liming ; Ding, Zibiao ; Chen, Yaoyu ; Xu, Xingtao ; Liu, Yong ; Li, Jiabao ; Lu, Ting ; Pan, Likun</creatorcontrib><description>[Display omitted]
Although widely used as hybrid capacitive deionization (HCDI) electrode material, the low intrinsic conductivity of metal hexacyanometalate (MHCF) severely hinders the fast insertion/extraction of Na+ in/from its 3D framework structure, damaging its desalination performance. Herein, we design a carbon nanotube (CNT) bridged nickel hexacyanoferrate architecture (NiHCF). The highly conductive CNT not only acts as the skeleton for the uniform growth of NiHCF to provide more ion-accessible surface and active sites but also serves as the conductive bridge to connect the NiHCF particles, which prevents the agglomeration of NiHCF particles and facilitates the charge transfer and ion diffusion during the desalination process. Therefore, the HCDI cell assembled by NiHCF/CNT cathode and AC anode exhibits an excellent desalination performance with a high desalination capacity of 29.1 mg g−1 and a superior desalination rate of 7.2 mg g−1 min−1 in 500 mg L−1 NaCl solution. This work provides a facile method for preparing high-performance MHCF-based electrodes for desalination application.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2022.10.140</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Capacitive deionization ; Carbon nanotube ; Conductive bridge ; Desalination ; Metal hexacyanometalate</subject><ispartof>Journal of colloid and interface science, 2023-01, Vol.630, p.372-381</ispartof><rights>2022 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-6b760919569adf91e526c1f9bcd7d584a18768542a51f609a69d6bef0565d7bb3</citedby><cites>FETCH-LOGICAL-c333t-6b760919569adf91e526c1f9bcd7d584a18768542a51f609a69d6bef0565d7bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2022.10.140$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Xu, Liming</creatorcontrib><creatorcontrib>Ding, Zibiao</creatorcontrib><creatorcontrib>Chen, Yaoyu</creatorcontrib><creatorcontrib>Xu, Xingtao</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Li, Jiabao</creatorcontrib><creatorcontrib>Lu, Ting</creatorcontrib><creatorcontrib>Pan, Likun</creatorcontrib><title>Carbon nanotube bridged nickel hexacyanoferrate architecture for high-performance hybrid capacitive deionization</title><title>Journal of colloid and interface science</title><description>[Display omitted]
Although widely used as hybrid capacitive deionization (HCDI) electrode material, the low intrinsic conductivity of metal hexacyanometalate (MHCF) severely hinders the fast insertion/extraction of Na+ in/from its 3D framework structure, damaging its desalination performance. Herein, we design a carbon nanotube (CNT) bridged nickel hexacyanoferrate architecture (NiHCF). The highly conductive CNT not only acts as the skeleton for the uniform growth of NiHCF to provide more ion-accessible surface and active sites but also serves as the conductive bridge to connect the NiHCF particles, which prevents the agglomeration of NiHCF particles and facilitates the charge transfer and ion diffusion during the desalination process. Therefore, the HCDI cell assembled by NiHCF/CNT cathode and AC anode exhibits an excellent desalination performance with a high desalination capacity of 29.1 mg g−1 and a superior desalination rate of 7.2 mg g−1 min−1 in 500 mg L−1 NaCl solution. This work provides a facile method for preparing high-performance MHCF-based electrodes for desalination application.</description><subject>Capacitive deionization</subject><subject>Carbon nanotube</subject><subject>Conductive bridge</subject><subject>Desalination</subject><subject>Metal hexacyanometalate</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UD1PwzAUtBBIlMIfYPLIkmI7sV1LLKjiS6rEArPl2C-NQ5oEO60ovx6HMjPd0727k-4QuqZkQQkVt82isT4uGGFsMXEFOUEzShTPJCX5KZoRwmimpJLn6CLGhhBKOVczNKxMKPsOd6brx10JuAzebcDhztsPaHENX8Ye0rOCEMwI2ARb-xHsuAuAqz7g2m_qbICQ7q3pLOD6MGVgawZj_ej3gB34vvPfZkxwic4q00a4-sM5en98eFs9Z-vXp5fV_TqzeZ6PmSilIIoqLpRxlaLAmbC0UqV10vFlYehSiiUvmOG0SkojlBMlVIQL7mRZ5nN0c8wdQv-5gzjqrY8W2tZ00O-iZjJnvCCSiiRlR6kNfYwBKj0EvzXhoCnR07y60dO8epr3lytIMt0dTZBK7D0EHa2H1N_5kNbRrvf_2X8ALNOGIQ</recordid><startdate>20230115</startdate><enddate>20230115</enddate><creator>Xu, Liming</creator><creator>Ding, Zibiao</creator><creator>Chen, Yaoyu</creator><creator>Xu, Xingtao</creator><creator>Liu, Yong</creator><creator>Li, Jiabao</creator><creator>Lu, Ting</creator><creator>Pan, Likun</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230115</creationdate><title>Carbon nanotube bridged nickel hexacyanoferrate architecture for high-performance hybrid capacitive deionization</title><author>Xu, Liming ; Ding, Zibiao ; Chen, Yaoyu ; Xu, Xingtao ; Liu, Yong ; Li, Jiabao ; Lu, Ting ; Pan, Likun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-6b760919569adf91e526c1f9bcd7d584a18768542a51f609a69d6bef0565d7bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Capacitive deionization</topic><topic>Carbon nanotube</topic><topic>Conductive bridge</topic><topic>Desalination</topic><topic>Metal hexacyanometalate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Liming</creatorcontrib><creatorcontrib>Ding, Zibiao</creatorcontrib><creatorcontrib>Chen, Yaoyu</creatorcontrib><creatorcontrib>Xu, Xingtao</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Li, Jiabao</creatorcontrib><creatorcontrib>Lu, Ting</creatorcontrib><creatorcontrib>Pan, Likun</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Liming</au><au>Ding, Zibiao</au><au>Chen, Yaoyu</au><au>Xu, Xingtao</au><au>Liu, Yong</au><au>Li, Jiabao</au><au>Lu, Ting</au><au>Pan, Likun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon nanotube bridged nickel hexacyanoferrate architecture for high-performance hybrid capacitive deionization</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2023-01-15</date><risdate>2023</risdate><volume>630</volume><spage>372</spage><epage>381</epage><pages>372-381</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted]
Although widely used as hybrid capacitive deionization (HCDI) electrode material, the low intrinsic conductivity of metal hexacyanometalate (MHCF) severely hinders the fast insertion/extraction of Na+ in/from its 3D framework structure, damaging its desalination performance. Herein, we design a carbon nanotube (CNT) bridged nickel hexacyanoferrate architecture (NiHCF). The highly conductive CNT not only acts as the skeleton for the uniform growth of NiHCF to provide more ion-accessible surface and active sites but also serves as the conductive bridge to connect the NiHCF particles, which prevents the agglomeration of NiHCF particles and facilitates the charge transfer and ion diffusion during the desalination process. Therefore, the HCDI cell assembled by NiHCF/CNT cathode and AC anode exhibits an excellent desalination performance with a high desalination capacity of 29.1 mg g−1 and a superior desalination rate of 7.2 mg g−1 min−1 in 500 mg L−1 NaCl solution. This work provides a facile method for preparing high-performance MHCF-based electrodes for desalination application.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2022.10.140</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2023-01, Vol.630, p.372-381 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_2732540716 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Capacitive deionization Carbon nanotube Conductive bridge Desalination Metal hexacyanometalate |
title | Carbon nanotube bridged nickel hexacyanoferrate architecture for high-performance hybrid capacitive deionization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A42%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20nanotube%20bridged%20nickel%20hexacyanoferrate%20architecture%20for%20high-performance%20hybrid%20capacitive%20deionization&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Xu,%20Liming&rft.date=2023-01-15&rft.volume=630&rft.spage=372&rft.epage=381&rft.pages=372-381&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2022.10.140&rft_dat=%3Cproquest_cross%3E2732540716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2732540716&rft_id=info:pmid/&rft_els_id=S0021979722019117&rfr_iscdi=true |