A Polyfluoroalkyl‐Containing Non‐fullerene Acceptor Enables Self‐Stratification in Organic Solar Cells
The elaborate control of the vertical phase distribution within an active layer is critical to ensuring the high performance of organic solar cells (OSCs), but is challenging. Herein, a self‐stratification active layer is realised by adding a novel polyfluoroalkyl‐containing non‐fullerene small‐mole...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2023-01, Vol.62 (1), p.e202213869-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | e202213869 |
container_title | Angewandte Chemie International Edition |
container_volume | 62 |
creator | Chen, Shihao Hong, Ling Dong, Minghao Deng, Wanyuan Shao, Lin Bai, Yuanqing Zhang, Kai Liu, Chunchen Wu, Hongbin Huang, Fei |
description | The elaborate control of the vertical phase distribution within an active layer is critical to ensuring the high performance of organic solar cells (OSCs), but is challenging. Herein, a self‐stratification active layer is realised by adding a novel polyfluoroalkyl‐containing non‐fullerene small‐molecule acceptor (NFSMA), EH‐C8F17, as the guest into PM6:BTP‐eC9 blend. A favourable vertical morphology was obtained with an upper acceptor‐enriched thin layer and a lower undisturbed bulk heterojunction layer. Consequently, a power conversion efficiency of 18.03 % was achieved, higher than the efficiency of 17.40 % for the device without EH‐C8F17. Additionally, benefiting from the improved charge transport and collection realised by this self‐stratification strategy, the OSC with a thickness of 350 nm had an impressive PCE of 16.89 %. The results of the study indicate that polyfluoroalkyl‐containing NFSMA‐assisted self‐stratification within the active layer is effective for realising an ideal morphology for high‐performance OSCs.
A polyfluoroalkyl‐containing guest acceptor (EH‐C8F17) enables self‐stratification in the active layer of bulk‐heterojunction organic solar cells. The favorable vertical phase separation and molecular stacking increases the mobility, increases carrier lifetimes, and reduces trap‐assisted recombination, leading to significantly improved device performance. |
doi_str_mv | 10.1002/anie.202213869 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2732536597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758788312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3739-857e39159bba8b2330992e7d4aaa91c26f074964386c82649958038cd8a3687d3</originalsourceid><addsrcrecordid>eNqFkctKJDEUhoOMeN-6lMBsZlM9SU5VLsumaS8gKvTMukilUxJNJ21ShfTOR5hn9EmMtDowm9nkhMN3fv5zfoROKZlQQthPHZydMMIYBcnVDjqgDaMVCAHfyr8GqIRs6D46zPmh8FISvof2gQOA4vQA-Sm-i37T-zGmqP3jxr--_JnFMGgXXLjHNzGURj96b5MNFk-NseshJjwPuvM244X1fSEWQ9KD650pbwzYBXyb7os5gxfR64Rn1vt8jHZ77bM9-ahH6Pf5_Nfssrq-vbiaTa8rAwJUJRthQdFGdZ2WHQMgSjErlrXWWlHDeE9ErXhdNjaS8VqpRhKQZik1cCmWcIR-bHXXKT6NNg_tymVTHOhg45hbJoA1wBslCvr9H_QhjikUd4VqpJASKCvUZEuZFHNOtm_Xya102rSUtO85tO85tF85lIGzD9mxW9nlF_55-AKoLfDsvN38R66d3lzN_4q_Ae6XlpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758788312</pqid></control><display><type>article</type><title>A Polyfluoroalkyl‐Containing Non‐fullerene Acceptor Enables Self‐Stratification in Organic Solar Cells</title><source>Wiley Online Library</source><creator>Chen, Shihao ; Hong, Ling ; Dong, Minghao ; Deng, Wanyuan ; Shao, Lin ; Bai, Yuanqing ; Zhang, Kai ; Liu, Chunchen ; Wu, Hongbin ; Huang, Fei</creator><creatorcontrib>Chen, Shihao ; Hong, Ling ; Dong, Minghao ; Deng, Wanyuan ; Shao, Lin ; Bai, Yuanqing ; Zhang, Kai ; Liu, Chunchen ; Wu, Hongbin ; Huang, Fei</creatorcontrib><description>The elaborate control of the vertical phase distribution within an active layer is critical to ensuring the high performance of organic solar cells (OSCs), but is challenging. Herein, a self‐stratification active layer is realised by adding a novel polyfluoroalkyl‐containing non‐fullerene small‐molecule acceptor (NFSMA), EH‐C8F17, as the guest into PM6:BTP‐eC9 blend. A favourable vertical morphology was obtained with an upper acceptor‐enriched thin layer and a lower undisturbed bulk heterojunction layer. Consequently, a power conversion efficiency of 18.03 % was achieved, higher than the efficiency of 17.40 % for the device without EH‐C8F17. Additionally, benefiting from the improved charge transport and collection realised by this self‐stratification strategy, the OSC with a thickness of 350 nm had an impressive PCE of 16.89 %. The results of the study indicate that polyfluoroalkyl‐containing NFSMA‐assisted self‐stratification within the active layer is effective for realising an ideal morphology for high‐performance OSCs.
A polyfluoroalkyl‐containing guest acceptor (EH‐C8F17) enables self‐stratification in the active layer of bulk‐heterojunction organic solar cells. The favorable vertical phase separation and molecular stacking increases the mobility, increases carrier lifetimes, and reduces trap‐assisted recombination, leading to significantly improved device performance.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202213869</identifier><identifier>PMID: 36333961</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acceptor ; Charge transport ; Energy conversion efficiency ; Fullerenes ; Heterojunctions ; Morphology ; Non-Fullerene ; Phase distribution ; Phase Separation ; Photovoltaic cells ; Solar Cells ; Stratification ; Vertical distribution</subject><ispartof>Angewandte Chemie International Edition, 2023-01, Vol.62 (1), p.e202213869-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3739-857e39159bba8b2330992e7d4aaa91c26f074964386c82649958038cd8a3687d3</citedby><cites>FETCH-LOGICAL-c3739-857e39159bba8b2330992e7d4aaa91c26f074964386c82649958038cd8a3687d3</cites><orcidid>0000-0001-9665-6642</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202213869$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202213869$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36333961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Shihao</creatorcontrib><creatorcontrib>Hong, Ling</creatorcontrib><creatorcontrib>Dong, Minghao</creatorcontrib><creatorcontrib>Deng, Wanyuan</creatorcontrib><creatorcontrib>Shao, Lin</creatorcontrib><creatorcontrib>Bai, Yuanqing</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Liu, Chunchen</creatorcontrib><creatorcontrib>Wu, Hongbin</creatorcontrib><creatorcontrib>Huang, Fei</creatorcontrib><title>A Polyfluoroalkyl‐Containing Non‐fullerene Acceptor Enables Self‐Stratification in Organic Solar Cells</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The elaborate control of the vertical phase distribution within an active layer is critical to ensuring the high performance of organic solar cells (OSCs), but is challenging. Herein, a self‐stratification active layer is realised by adding a novel polyfluoroalkyl‐containing non‐fullerene small‐molecule acceptor (NFSMA), EH‐C8F17, as the guest into PM6:BTP‐eC9 blend. A favourable vertical morphology was obtained with an upper acceptor‐enriched thin layer and a lower undisturbed bulk heterojunction layer. Consequently, a power conversion efficiency of 18.03 % was achieved, higher than the efficiency of 17.40 % for the device without EH‐C8F17. Additionally, benefiting from the improved charge transport and collection realised by this self‐stratification strategy, the OSC with a thickness of 350 nm had an impressive PCE of 16.89 %. The results of the study indicate that polyfluoroalkyl‐containing NFSMA‐assisted self‐stratification within the active layer is effective for realising an ideal morphology for high‐performance OSCs.
A polyfluoroalkyl‐containing guest acceptor (EH‐C8F17) enables self‐stratification in the active layer of bulk‐heterojunction organic solar cells. The favorable vertical phase separation and molecular stacking increases the mobility, increases carrier lifetimes, and reduces trap‐assisted recombination, leading to significantly improved device performance.</description><subject>Acceptor</subject><subject>Charge transport</subject><subject>Energy conversion efficiency</subject><subject>Fullerenes</subject><subject>Heterojunctions</subject><subject>Morphology</subject><subject>Non-Fullerene</subject><subject>Phase distribution</subject><subject>Phase Separation</subject><subject>Photovoltaic cells</subject><subject>Solar Cells</subject><subject>Stratification</subject><subject>Vertical distribution</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkctKJDEUhoOMeN-6lMBsZlM9SU5VLsumaS8gKvTMukilUxJNJ21ShfTOR5hn9EmMtDowm9nkhMN3fv5zfoROKZlQQthPHZydMMIYBcnVDjqgDaMVCAHfyr8GqIRs6D46zPmh8FISvof2gQOA4vQA-Sm-i37T-zGmqP3jxr--_JnFMGgXXLjHNzGURj96b5MNFk-NseshJjwPuvM244X1fSEWQ9KD650pbwzYBXyb7os5gxfR64Rn1vt8jHZ77bM9-ahH6Pf5_Nfssrq-vbiaTa8rAwJUJRthQdFGdZ2WHQMgSjErlrXWWlHDeE9ErXhdNjaS8VqpRhKQZik1cCmWcIR-bHXXKT6NNg_tymVTHOhg45hbJoA1wBslCvr9H_QhjikUd4VqpJASKCvUZEuZFHNOtm_Xya102rSUtO85tO85tF85lIGzD9mxW9nlF_55-AKoLfDsvN38R66d3lzN_4q_Ae6XlpA</recordid><startdate>20230102</startdate><enddate>20230102</enddate><creator>Chen, Shihao</creator><creator>Hong, Ling</creator><creator>Dong, Minghao</creator><creator>Deng, Wanyuan</creator><creator>Shao, Lin</creator><creator>Bai, Yuanqing</creator><creator>Zhang, Kai</creator><creator>Liu, Chunchen</creator><creator>Wu, Hongbin</creator><creator>Huang, Fei</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9665-6642</orcidid></search><sort><creationdate>20230102</creationdate><title>A Polyfluoroalkyl‐Containing Non‐fullerene Acceptor Enables Self‐Stratification in Organic Solar Cells</title><author>Chen, Shihao ; Hong, Ling ; Dong, Minghao ; Deng, Wanyuan ; Shao, Lin ; Bai, Yuanqing ; Zhang, Kai ; Liu, Chunchen ; Wu, Hongbin ; Huang, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3739-857e39159bba8b2330992e7d4aaa91c26f074964386c82649958038cd8a3687d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acceptor</topic><topic>Charge transport</topic><topic>Energy conversion efficiency</topic><topic>Fullerenes</topic><topic>Heterojunctions</topic><topic>Morphology</topic><topic>Non-Fullerene</topic><topic>Phase distribution</topic><topic>Phase Separation</topic><topic>Photovoltaic cells</topic><topic>Solar Cells</topic><topic>Stratification</topic><topic>Vertical distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shihao</creatorcontrib><creatorcontrib>Hong, Ling</creatorcontrib><creatorcontrib>Dong, Minghao</creatorcontrib><creatorcontrib>Deng, Wanyuan</creatorcontrib><creatorcontrib>Shao, Lin</creatorcontrib><creatorcontrib>Bai, Yuanqing</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Liu, Chunchen</creatorcontrib><creatorcontrib>Wu, Hongbin</creatorcontrib><creatorcontrib>Huang, Fei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shihao</au><au>Hong, Ling</au><au>Dong, Minghao</au><au>Deng, Wanyuan</au><au>Shao, Lin</au><au>Bai, Yuanqing</au><au>Zhang, Kai</au><au>Liu, Chunchen</au><au>Wu, Hongbin</au><au>Huang, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Polyfluoroalkyl‐Containing Non‐fullerene Acceptor Enables Self‐Stratification in Organic Solar Cells</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2023-01-02</date><risdate>2023</risdate><volume>62</volume><issue>1</issue><spage>e202213869</spage><epage>n/a</epage><pages>e202213869-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The elaborate control of the vertical phase distribution within an active layer is critical to ensuring the high performance of organic solar cells (OSCs), but is challenging. Herein, a self‐stratification active layer is realised by adding a novel polyfluoroalkyl‐containing non‐fullerene small‐molecule acceptor (NFSMA), EH‐C8F17, as the guest into PM6:BTP‐eC9 blend. A favourable vertical morphology was obtained with an upper acceptor‐enriched thin layer and a lower undisturbed bulk heterojunction layer. Consequently, a power conversion efficiency of 18.03 % was achieved, higher than the efficiency of 17.40 % for the device without EH‐C8F17. Additionally, benefiting from the improved charge transport and collection realised by this self‐stratification strategy, the OSC with a thickness of 350 nm had an impressive PCE of 16.89 %. The results of the study indicate that polyfluoroalkyl‐containing NFSMA‐assisted self‐stratification within the active layer is effective for realising an ideal morphology for high‐performance OSCs.
A polyfluoroalkyl‐containing guest acceptor (EH‐C8F17) enables self‐stratification in the active layer of bulk‐heterojunction organic solar cells. The favorable vertical phase separation and molecular stacking increases the mobility, increases carrier lifetimes, and reduces trap‐assisted recombination, leading to significantly improved device performance.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36333961</pmid><doi>10.1002/anie.202213869</doi><tpages>10</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-9665-6642</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2023-01, Vol.62 (1), p.e202213869-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2732536597 |
source | Wiley Online Library |
subjects | Acceptor Charge transport Energy conversion efficiency Fullerenes Heterojunctions Morphology Non-Fullerene Phase distribution Phase Separation Photovoltaic cells Solar Cells Stratification Vertical distribution |
title | A Polyfluoroalkyl‐Containing Non‐fullerene Acceptor Enables Self‐Stratification in Organic Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A28%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Polyfluoroalkyl%E2%80%90Containing%20Non%E2%80%90fullerene%20Acceptor%20Enables%20Self%E2%80%90Stratification%20in%20Organic%20Solar%20Cells&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Chen,%20Shihao&rft.date=2023-01-02&rft.volume=62&rft.issue=1&rft.spage=e202213869&rft.epage=n/a&rft.pages=e202213869-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202213869&rft_dat=%3Cproquest_cross%3E2758788312%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758788312&rft_id=info:pmid/36333961&rfr_iscdi=true |