Computer simulation and modeling the metal to insulating transition of liquid mercury via pair, empirical, and many-body potentials
In this study, Monte Carlo simulations were carried out to detect the metal–insulator transition in liquid mercury by changing the static properties at the microscopic scale. In the simulations pair, empirical, and many-body potentials govern metal–metal interactions in the canonical ensemble. The s...
Gespeichert in:
Veröffentlicht in: | Journal of molecular modeling 2022-12, Vol.28 (12), p.377-377, Article 377 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 377 |
---|---|
container_issue | 12 |
container_start_page | 377 |
container_title | Journal of molecular modeling |
container_volume | 28 |
creator | Karimi, Hedayat |
description | In this study, Monte Carlo simulations were carried out to detect the metal–insulator transition in liquid mercury by changing the static properties at the microscopic scale. In the simulations pair, empirical, and many-body potentials govern metal–metal interactions in the canonical ensemble. The structural and thermodynamic changes over a wide temperature range from 773 to 1773 K are described in the first coordination shell and residual internal energy, respectively. The results reveal that during the simulated heating process, the properties undergo significant change at 1673 K, which is in connection with the metal-nonmetal transition in the liquid. These findings coincide with the experimental observations of this thermodynamic phenomenon. Notably, the free energy of association that renders the system to this thermodynamic state is estimated.
Graphical Abstract |
doi_str_mv | 10.1007/s00894-022-05372-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2732536476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2732536476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-3eb9f256b78c2c9858dcb9fd624f57b69adc84b19965f08aab12e9b38e4372a13</originalsourceid><addsrcrecordid>eNp9kTtLBDEUhYMouKh_wCpgY7HRPOaRlLL4ggUbrUMmk9EsM8lskhG29o-b3REEC6sLh-8cDvcAcEnwDcG4vo0Yc1EgTCnCJaspEkdggUXBUYkpOwYLUhGMqCjwKbiIcYMxJrSsSkoX4Gvlh3FKJsBoh6lXyXoHlWvh4FvTW_cO04eBg0mqh8lD6-IB2utBuWgPvO9gb7eTzS4T9BR28NMqOCobltAMow1Wq345xyq3Q41vd3D0ybhkVR_PwUmXj7n4uWfg7eH-dfWE1i-Pz6u7NdKMVgkx04gu925qrqkWvOStzkpb0aIr66YSqtW8aIgQVdlhrlRDqBEN46bIT1GEnYHrOXcMfjuZmORgozZ9r5zxU5S0ZrRkVVFXGb36g278FFxud6AoJ0TsA-lM6eBjDKaTY7CDCjtJsNxPI-dpZJ5GHqaRIpvYbIoZdu8m_Eb_4_oGGLqTIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732281191</pqid></control><display><type>article</type><title>Computer simulation and modeling the metal to insulating transition of liquid mercury via pair, empirical, and many-body potentials</title><source>Springer Nature - Complete Springer Journals</source><creator>Karimi, Hedayat</creator><creatorcontrib>Karimi, Hedayat</creatorcontrib><description>In this study, Monte Carlo simulations were carried out to detect the metal–insulator transition in liquid mercury by changing the static properties at the microscopic scale. In the simulations pair, empirical, and many-body potentials govern metal–metal interactions in the canonical ensemble. The structural and thermodynamic changes over a wide temperature range from 773 to 1773 K are described in the first coordination shell and residual internal energy, respectively. The results reveal that during the simulated heating process, the properties undergo significant change at 1673 K, which is in connection with the metal-nonmetal transition in the liquid. These findings coincide with the experimental observations of this thermodynamic phenomenon. Notably, the free energy of association that renders the system to this thermodynamic state is estimated.
Graphical Abstract</description><identifier>ISSN: 1610-2940</identifier><identifier>EISSN: 0948-5023</identifier><identifier>DOI: 10.1007/s00894-022-05372-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Computer Appl. in Life Sciences ; Computer Applications in Chemistry ; Computer simulation ; Free energy ; Internal energy ; Metal-insulator transition ; Molecular Medicine ; Original Paper ; Residual energy ; Theoretical and Computational Chemistry ; Thermodynamics</subject><ispartof>Journal of molecular modeling, 2022-12, Vol.28 (12), p.377-377, Article 377</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-3eb9f256b78c2c9858dcb9fd624f57b69adc84b19965f08aab12e9b38e4372a13</citedby><cites>FETCH-LOGICAL-c326t-3eb9f256b78c2c9858dcb9fd624f57b69adc84b19965f08aab12e9b38e4372a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00894-022-05372-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00894-022-05372-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Karimi, Hedayat</creatorcontrib><title>Computer simulation and modeling the metal to insulating transition of liquid mercury via pair, empirical, and many-body potentials</title><title>Journal of molecular modeling</title><addtitle>J Mol Model</addtitle><description>In this study, Monte Carlo simulations were carried out to detect the metal–insulator transition in liquid mercury by changing the static properties at the microscopic scale. In the simulations pair, empirical, and many-body potentials govern metal–metal interactions in the canonical ensemble. The structural and thermodynamic changes over a wide temperature range from 773 to 1773 K are described in the first coordination shell and residual internal energy, respectively. The results reveal that during the simulated heating process, the properties undergo significant change at 1673 K, which is in connection with the metal-nonmetal transition in the liquid. These findings coincide with the experimental observations of this thermodynamic phenomenon. Notably, the free energy of association that renders the system to this thermodynamic state is estimated.
Graphical Abstract</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Applications in Chemistry</subject><subject>Computer simulation</subject><subject>Free energy</subject><subject>Internal energy</subject><subject>Metal-insulator transition</subject><subject>Molecular Medicine</subject><subject>Original Paper</subject><subject>Residual energy</subject><subject>Theoretical and Computational Chemistry</subject><subject>Thermodynamics</subject><issn>1610-2940</issn><issn>0948-5023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kTtLBDEUhYMouKh_wCpgY7HRPOaRlLL4ggUbrUMmk9EsM8lskhG29o-b3REEC6sLh-8cDvcAcEnwDcG4vo0Yc1EgTCnCJaspEkdggUXBUYkpOwYLUhGMqCjwKbiIcYMxJrSsSkoX4Gvlh3FKJsBoh6lXyXoHlWvh4FvTW_cO04eBg0mqh8lD6-IB2utBuWgPvO9gb7eTzS4T9BR28NMqOCobltAMow1Wq345xyq3Q41vd3D0ybhkVR_PwUmXj7n4uWfg7eH-dfWE1i-Pz6u7NdKMVgkx04gu925qrqkWvOStzkpb0aIr66YSqtW8aIgQVdlhrlRDqBEN46bIT1GEnYHrOXcMfjuZmORgozZ9r5zxU5S0ZrRkVVFXGb36g278FFxud6AoJ0TsA-lM6eBjDKaTY7CDCjtJsNxPI-dpZJ5GHqaRIpvYbIoZdu8m_Eb_4_oGGLqTIQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Karimi, Hedayat</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20221201</creationdate><title>Computer simulation and modeling the metal to insulating transition of liquid mercury via pair, empirical, and many-body potentials</title><author>Karimi, Hedayat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-3eb9f256b78c2c9858dcb9fd624f57b69adc84b19965f08aab12e9b38e4372a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Applications in Chemistry</topic><topic>Computer simulation</topic><topic>Free energy</topic><topic>Internal energy</topic><topic>Metal-insulator transition</topic><topic>Molecular Medicine</topic><topic>Original Paper</topic><topic>Residual energy</topic><topic>Theoretical and Computational Chemistry</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karimi, Hedayat</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karimi, Hedayat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer simulation and modeling the metal to insulating transition of liquid mercury via pair, empirical, and many-body potentials</atitle><jtitle>Journal of molecular modeling</jtitle><stitle>J Mol Model</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>28</volume><issue>12</issue><spage>377</spage><epage>377</epage><pages>377-377</pages><artnum>377</artnum><issn>1610-2940</issn><eissn>0948-5023</eissn><abstract>In this study, Monte Carlo simulations were carried out to detect the metal–insulator transition in liquid mercury by changing the static properties at the microscopic scale. In the simulations pair, empirical, and many-body potentials govern metal–metal interactions in the canonical ensemble. The structural and thermodynamic changes over a wide temperature range from 773 to 1773 K are described in the first coordination shell and residual internal energy, respectively. The results reveal that during the simulated heating process, the properties undergo significant change at 1673 K, which is in connection with the metal-nonmetal transition in the liquid. These findings coincide with the experimental observations of this thermodynamic phenomenon. Notably, the free energy of association that renders the system to this thermodynamic state is estimated.
Graphical Abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00894-022-05372-9</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1610-2940 |
ispartof | Journal of molecular modeling, 2022-12, Vol.28 (12), p.377-377, Article 377 |
issn | 1610-2940 0948-5023 |
language | eng |
recordid | cdi_proquest_miscellaneous_2732536476 |
source | Springer Nature - Complete Springer Journals |
subjects | Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Computer Appl. in Life Sciences Computer Applications in Chemistry Computer simulation Free energy Internal energy Metal-insulator transition Molecular Medicine Original Paper Residual energy Theoretical and Computational Chemistry Thermodynamics |
title | Computer simulation and modeling the metal to insulating transition of liquid mercury via pair, empirical, and many-body potentials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20simulation%20and%20modeling%20the%20metal%20to%20insulating%20transition%20of%20liquid%20mercury%20via%20pair,%20empirical,%20and%20many-body%20potentials&rft.jtitle=Journal%20of%20molecular%20modeling&rft.au=Karimi,%20Hedayat&rft.date=2022-12-01&rft.volume=28&rft.issue=12&rft.spage=377&rft.epage=377&rft.pages=377-377&rft.artnum=377&rft.issn=1610-2940&rft.eissn=0948-5023&rft_id=info:doi/10.1007/s00894-022-05372-9&rft_dat=%3Cproquest_cross%3E2732536476%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2732281191&rft_id=info:pmid/&rfr_iscdi=true |