Artificial neural networks reveal sex differences in gene methylation, and connections between maternal risk factors and symptom severity in autism spectrum disorder

Artificial neural networks were used to unravel connections among blood gene methylation levels, sex, maternal risk factors and symptom severity evaluated using the Autism Diagnostic Observation Schedule 2 (ADOS-2) score in 58 children with autism spectrum disorder (ASD). Methylation levels of , and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Epigenomics 2022-10, Vol.14 (19), p.1181-1195
Hauptverfasser: Stoccoro, Andrea, Gallo, Roberta, Calderoni, Sara, Cagiano, Romina, Muratori, Filippo, Migliore, Lucia, Grossi, Enzo, Coppedè, Fabio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1195
container_issue 19
container_start_page 1181
container_title Epigenomics
container_volume 14
creator Stoccoro, Andrea
Gallo, Roberta
Calderoni, Sara
Cagiano, Romina
Muratori, Filippo
Migliore, Lucia
Grossi, Enzo
Coppedè, Fabio
description Artificial neural networks were used to unravel connections among blood gene methylation levels, sex, maternal risk factors and symptom severity evaluated using the Autism Diagnostic Observation Schedule 2 (ADOS-2) score in 58 children with autism spectrum disorder (ASD). Methylation levels of , and genes were connected to females, and those of , and genes to males. High gestational weight gain, lack of folic acid supplements, advanced maternal age, preterm birth, low birthweight and living in rural context were the best predictors of a high ADOS-2 score. Artificial neural networks revealed links among ASD maternal risk factors, symptom severity, gene methylation levels and sex differences in methylation that warrant further investigation in ASD.
doi_str_mv 10.2217/epi-2022-0179
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2731718834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731718834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-33f2212a30cbb947d677c647d91c2e1b388869e3b62ede94445309c44cdabff23</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhS0Eaqulx16RjxwIxHY2iY9VBQWpEheQuFmOMwbTxA4zTmF_UP8nTrf0hi_Pz3r-RprH2IWo30opunewhErWUla16PQzdia6fV0JLb89f7oLccrOiX7W5SjZ61acsFPVKrnvG3HG7i8xBx9csBOPsOKD5N8Jb4kj3EHxBH_4GLwHhOiAeIj8O0TgM-Qfh8nmkOIbbuPIXYoR3OaJDwUCEPlsM2AsFAx0y711OSE9pOkwLznNBX8HGPJh49o1BypPS8HgOpexlHAEfMleeDsRnD_qjn398P7L1cfq5vP1p6vLm8qpRuVKKV_WIq2q3TDophvbrnNtUS2cBDGovu9bDWpoJYygm6bZq1q7pnGjHbyXasdeH7kLpl8rUDZzIAfTZCOklYzslOhE35dpO1Ydow4TEYI3C4bZ4sGI2mzlmFKO2coxWzkl_-oRvQ4zjE_pf1WUgD4G_JpXBHJhW7c5uvKjdBThP_C_5-eiqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731718834</pqid></control><display><type>article</type><title>Artificial neural networks reveal sex differences in gene methylation, and connections between maternal risk factors and symptom severity in autism spectrum disorder</title><source>MEDLINE</source><source>PubMed Central</source><creator>Stoccoro, Andrea ; Gallo, Roberta ; Calderoni, Sara ; Cagiano, Romina ; Muratori, Filippo ; Migliore, Lucia ; Grossi, Enzo ; Coppedè, Fabio</creator><creatorcontrib>Stoccoro, Andrea ; Gallo, Roberta ; Calderoni, Sara ; Cagiano, Romina ; Muratori, Filippo ; Migliore, Lucia ; Grossi, Enzo ; Coppedè, Fabio</creatorcontrib><description>Artificial neural networks were used to unravel connections among blood gene methylation levels, sex, maternal risk factors and symptom severity evaluated using the Autism Diagnostic Observation Schedule 2 (ADOS-2) score in 58 children with autism spectrum disorder (ASD). Methylation levels of , and genes were connected to females, and those of , and genes to males. High gestational weight gain, lack of folic acid supplements, advanced maternal age, preterm birth, low birthweight and living in rural context were the best predictors of a high ADOS-2 score. Artificial neural networks revealed links among ASD maternal risk factors, symptom severity, gene methylation levels and sex differences in methylation that warrant further investigation in ASD.</description><identifier>ISSN: 1750-1911</identifier><identifier>EISSN: 1750-192X</identifier><identifier>DOI: 10.2217/epi-2022-0179</identifier><identifier>PMID: 36325841</identifier><language>eng</language><publisher>England: Future Medicine Ltd</publisher><subject>artificial neural networks ; ASD ; autism spectrum disorder ; Autism Spectrum Disorder - diagnosis ; Autism Spectrum Disorder - genetics ; Child ; DNA methylation ; epigenetics ; Female ; Humans ; Infant, Newborn ; Male ; maternal risk factors ; Methylation ; Neural Networks, Computer ; Premature Birth ; Risk Factors ; Sex Characteristics ; sex difference</subject><ispartof>Epigenomics, 2022-10, Vol.14 (19), p.1181-1195</ispartof><rights>2022 Future Medicine Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-33f2212a30cbb947d677c647d91c2e1b388869e3b62ede94445309c44cdabff23</citedby><cites>FETCH-LOGICAL-c343t-33f2212a30cbb947d677c647d91c2e1b388869e3b62ede94445309c44cdabff23</cites><orcidid>0000-0002-6768-8466 ; 0000-0002-3081-6647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36325841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stoccoro, Andrea</creatorcontrib><creatorcontrib>Gallo, Roberta</creatorcontrib><creatorcontrib>Calderoni, Sara</creatorcontrib><creatorcontrib>Cagiano, Romina</creatorcontrib><creatorcontrib>Muratori, Filippo</creatorcontrib><creatorcontrib>Migliore, Lucia</creatorcontrib><creatorcontrib>Grossi, Enzo</creatorcontrib><creatorcontrib>Coppedè, Fabio</creatorcontrib><title>Artificial neural networks reveal sex differences in gene methylation, and connections between maternal risk factors and symptom severity in autism spectrum disorder</title><title>Epigenomics</title><addtitle>Epigenomics</addtitle><description>Artificial neural networks were used to unravel connections among blood gene methylation levels, sex, maternal risk factors and symptom severity evaluated using the Autism Diagnostic Observation Schedule 2 (ADOS-2) score in 58 children with autism spectrum disorder (ASD). Methylation levels of , and genes were connected to females, and those of , and genes to males. High gestational weight gain, lack of folic acid supplements, advanced maternal age, preterm birth, low birthweight and living in rural context were the best predictors of a high ADOS-2 score. Artificial neural networks revealed links among ASD maternal risk factors, symptom severity, gene methylation levels and sex differences in methylation that warrant further investigation in ASD.</description><subject>artificial neural networks</subject><subject>ASD</subject><subject>autism spectrum disorder</subject><subject>Autism Spectrum Disorder - diagnosis</subject><subject>Autism Spectrum Disorder - genetics</subject><subject>Child</subject><subject>DNA methylation</subject><subject>epigenetics</subject><subject>Female</subject><subject>Humans</subject><subject>Infant, Newborn</subject><subject>Male</subject><subject>maternal risk factors</subject><subject>Methylation</subject><subject>Neural Networks, Computer</subject><subject>Premature Birth</subject><subject>Risk Factors</subject><subject>Sex Characteristics</subject><subject>sex difference</subject><issn>1750-1911</issn><issn>1750-192X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUFv1DAQhS0Eaqulx16RjxwIxHY2iY9VBQWpEheQuFmOMwbTxA4zTmF_UP8nTrf0hi_Pz3r-RprH2IWo30opunewhErWUla16PQzdia6fV0JLb89f7oLccrOiX7W5SjZ61acsFPVKrnvG3HG7i8xBx9csBOPsOKD5N8Jb4kj3EHxBH_4GLwHhOiAeIj8O0TgM-Qfh8nmkOIbbuPIXYoR3OaJDwUCEPlsM2AsFAx0y711OSE9pOkwLznNBX8HGPJh49o1BypPS8HgOpexlHAEfMleeDsRnD_qjn398P7L1cfq5vP1p6vLm8qpRuVKKV_WIq2q3TDophvbrnNtUS2cBDGovu9bDWpoJYygm6bZq1q7pnGjHbyXasdeH7kLpl8rUDZzIAfTZCOklYzslOhE35dpO1Ydow4TEYI3C4bZ4sGI2mzlmFKO2coxWzkl_-oRvQ4zjE_pf1WUgD4G_JpXBHJhW7c5uvKjdBThP_C_5-eiqA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Stoccoro, Andrea</creator><creator>Gallo, Roberta</creator><creator>Calderoni, Sara</creator><creator>Cagiano, Romina</creator><creator>Muratori, Filippo</creator><creator>Migliore, Lucia</creator><creator>Grossi, Enzo</creator><creator>Coppedè, Fabio</creator><general>Future Medicine Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6768-8466</orcidid><orcidid>https://orcid.org/0000-0002-3081-6647</orcidid></search><sort><creationdate>20221001</creationdate><title>Artificial neural networks reveal sex differences in gene methylation, and connections between maternal risk factors and symptom severity in autism spectrum disorder</title><author>Stoccoro, Andrea ; Gallo, Roberta ; Calderoni, Sara ; Cagiano, Romina ; Muratori, Filippo ; Migliore, Lucia ; Grossi, Enzo ; Coppedè, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-33f2212a30cbb947d677c647d91c2e1b388869e3b62ede94445309c44cdabff23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>artificial neural networks</topic><topic>ASD</topic><topic>autism spectrum disorder</topic><topic>Autism Spectrum Disorder - diagnosis</topic><topic>Autism Spectrum Disorder - genetics</topic><topic>Child</topic><topic>DNA methylation</topic><topic>epigenetics</topic><topic>Female</topic><topic>Humans</topic><topic>Infant, Newborn</topic><topic>Male</topic><topic>maternal risk factors</topic><topic>Methylation</topic><topic>Neural Networks, Computer</topic><topic>Premature Birth</topic><topic>Risk Factors</topic><topic>Sex Characteristics</topic><topic>sex difference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stoccoro, Andrea</creatorcontrib><creatorcontrib>Gallo, Roberta</creatorcontrib><creatorcontrib>Calderoni, Sara</creatorcontrib><creatorcontrib>Cagiano, Romina</creatorcontrib><creatorcontrib>Muratori, Filippo</creatorcontrib><creatorcontrib>Migliore, Lucia</creatorcontrib><creatorcontrib>Grossi, Enzo</creatorcontrib><creatorcontrib>Coppedè, Fabio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Epigenomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stoccoro, Andrea</au><au>Gallo, Roberta</au><au>Calderoni, Sara</au><au>Cagiano, Romina</au><au>Muratori, Filippo</au><au>Migliore, Lucia</au><au>Grossi, Enzo</au><au>Coppedè, Fabio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural networks reveal sex differences in gene methylation, and connections between maternal risk factors and symptom severity in autism spectrum disorder</atitle><jtitle>Epigenomics</jtitle><addtitle>Epigenomics</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>14</volume><issue>19</issue><spage>1181</spage><epage>1195</epage><pages>1181-1195</pages><issn>1750-1911</issn><eissn>1750-192X</eissn><abstract>Artificial neural networks were used to unravel connections among blood gene methylation levels, sex, maternal risk factors and symptom severity evaluated using the Autism Diagnostic Observation Schedule 2 (ADOS-2) score in 58 children with autism spectrum disorder (ASD). Methylation levels of , and genes were connected to females, and those of , and genes to males. High gestational weight gain, lack of folic acid supplements, advanced maternal age, preterm birth, low birthweight and living in rural context were the best predictors of a high ADOS-2 score. Artificial neural networks revealed links among ASD maternal risk factors, symptom severity, gene methylation levels and sex differences in methylation that warrant further investigation in ASD.</abstract><cop>England</cop><pub>Future Medicine Ltd</pub><pmid>36325841</pmid><doi>10.2217/epi-2022-0179</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6768-8466</orcidid><orcidid>https://orcid.org/0000-0002-3081-6647</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1750-1911
ispartof Epigenomics, 2022-10, Vol.14 (19), p.1181-1195
issn 1750-1911
1750-192X
language eng
recordid cdi_proquest_miscellaneous_2731718834
source MEDLINE; PubMed Central
subjects artificial neural networks
ASD
autism spectrum disorder
Autism Spectrum Disorder - diagnosis
Autism Spectrum Disorder - genetics
Child
DNA methylation
epigenetics
Female
Humans
Infant, Newborn
Male
maternal risk factors
Methylation
Neural Networks, Computer
Premature Birth
Risk Factors
Sex Characteristics
sex difference
title Artificial neural networks reveal sex differences in gene methylation, and connections between maternal risk factors and symptom severity in autism spectrum disorder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T01%3A50%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20networks%20reveal%20sex%20differences%20in%20gene%20methylation,%20and%20connections%20between%20maternal%20risk%20factors%20and%20symptom%20severity%20in%20autism%20spectrum%20disorder&rft.jtitle=Epigenomics&rft.au=Stoccoro,%20Andrea&rft.date=2022-10-01&rft.volume=14&rft.issue=19&rft.spage=1181&rft.epage=1195&rft.pages=1181-1195&rft.issn=1750-1911&rft.eissn=1750-192X&rft_id=info:doi/10.2217/epi-2022-0179&rft_dat=%3Cproquest_cross%3E2731718834%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731718834&rft_id=info:pmid/36325841&rfr_iscdi=true